Edge-competing Pathological Liver Vessel Segmentation with Limited Labels

分割 人工智能 计算机科学 肝细胞癌 图像分割 模式识别(心理学) GSM演进的增强数据速率 病态的 计算机视觉 医学 病理 癌症研究
作者
Zunlei Feng,Zhonghua Wang,Xinchao Wang,Xiuming Zhang,Lechao Cheng,Jie Lei,Yuexuan Wang,Mingli Song
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (2): 1325-1333 被引量:12
标识
DOI:10.1609/aaai.v35i2.16221
摘要

The microvascular invasion (MVI) is a major prognostic factor in hepatocellular carcinoma, which is one of the malignant tumors with the highest mortality rate. The diagnosis of MVI needs discovering the vessels that contain hepatocellular carcinoma cells and counting their number in each vessel, which depends heavily on experiences of the doctor, is largely subjective and time-consuming. However, there is no algorithm as yet tailored for the MVI detection from pathological images. This paper collects the first pathological liver image dataset containing $522$ whole slide images with labels of vessels, MVI, and hepatocellular carcinoma grades. The first and essential step for the automatic diagnosis of MVI is the accurate segmentation of vessels. The unique characteristics of pathological liver images, such as super-large size, multi-scale vessel, and blurred vessel edges, make the accurate vessel segmentation challenging. Based on the collected dataset, we propose an Edge-competing Vessel Segmentation Network (EVS-Net), which contains a segmentation network and two edge segmentation discriminators. The segmentation network, combined with an edge-aware self-supervision mechanism, is devised to conduct vessel segmentation with limited labeled patches. Meanwhile, two discriminators are introduced to distinguish whether the segmented vessel and background contain residual features in an adversarial manner. In the training stage, two discriminators are devised to compete for the predicted position of edges. Exhaustive experiments demonstrate that, with only limited labeled patches, EVS-Net achieves a close performance of fully supervised methods, which provides a convenient tool for the pathological liver vessel segmentation. Code is publicly available at https://github.com/wang97zh/EVS-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxlcx完成签到,获得积分10
3秒前
6秒前
9秒前
Skyrin完成签到,获得积分0
11秒前
小白白完成签到 ,获得积分10
11秒前
香蕉秋寒发布了新的文献求助30
14秒前
元锦程完成签到,获得积分10
14秒前
19秒前
511完成签到 ,获得积分10
24秒前
lizhiqian2024发布了新的文献求助10
29秒前
哈哈哈完成签到 ,获得积分10
30秒前
瘦瘦的迎梦完成签到 ,获得积分10
31秒前
HCLonely完成签到,获得积分0
31秒前
YY完成签到,获得积分10
32秒前
博ge完成签到 ,获得积分10
34秒前
Jackson333完成签到,获得积分10
37秒前
浪浪山完成签到,获得积分10
38秒前
西洲完成签到 ,获得积分10
40秒前
Estella完成签到 ,获得积分10
41秒前
无限的含羞草完成签到,获得积分10
41秒前
lizhiqian2024发布了新的文献求助10
44秒前
甜甜圈发布了新的文献求助10
47秒前
47秒前
故酒应助科研通管家采纳,获得10
47秒前
顾矜应助科研通管家采纳,获得10
47秒前
大个应助科研通管家采纳,获得10
48秒前
领导范儿应助科研通管家采纳,获得30
48秒前
48秒前
JamesPei应助科研通管家采纳,获得10
48秒前
rayqiang完成签到,获得积分0
48秒前
涂涂完成签到 ,获得积分10
49秒前
49秒前
Tree完成签到 ,获得积分10
50秒前
落后翠柏发布了新的文献求助10
54秒前
55秒前
香蕉秋寒完成签到,获得积分10
55秒前
don完成签到 ,获得积分10
56秒前
优雅含莲完成签到 ,获得积分10
57秒前
活泼的便当完成签到,获得积分10
57秒前
syangZ完成签到,获得积分10
58秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801027
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329710
捐赠科研通 3063074
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726