PDC-Net+: Enhanced Probabilistic Dense Correspondence Network

概率逻辑 计算机科学 人工智能 离群值 光流 背景(考古学) 匹配(统计) 机器学习 模式识别(心理学) 计算机视觉 图像(数学) 数学 生物 统计 古生物学
作者
Prune Truong,Martin Danelljan,Radu Timofte,Luc Van Gool
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (8): 10247-10266 被引量:43
标识
DOI:10.1109/tpami.2023.3249225
摘要

Establishing robust and accurate correspondences between a pair of images is a long-standing computer vision problem with numerous applications. While classically dominated by sparse methods, emerging dense approaches offer a compelling alternative paradigm that avoids the keypoint detection step. However, dense flow estimation is often inaccurate in the case of large displacements, occlusions, or homogeneous regions. In order to apply dense methods to real-world applications, such as pose estimation, image manipulation, or 3D reconstruction, it is therefore crucial to estimate the confidence of the predicted matches. We propose the Enhanced Probabilistic Dense Correspondence Network, PDC-Net+, capable of estimating accurate dense correspondences along with a reliable confidence map. We develop a flexible probabilistic approach that jointly learns the flow prediction and its uncertainty. In particular, we parametrize the predictive distribution as a constrained mixture model, ensuring better modelling of both accurate flow predictions and outliers. Moreover, we develop an architecture and an enhanced training strategy tailored for robust and generalizable uncertainty prediction in the context of self-supervised training. Our approach obtains state-of-the-art results on multiple challenging geometric matching and optical flow datasets. We further validate the usefulness of our probabilistic confidence estimation for the tasks of pose estimation, 3D reconstruction, image-based localization, and image retrieval.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拾光完成签到,获得积分10
刚刚
说谎还是伟大完成签到,获得积分10
1秒前
haikuotian举报Luanrf求助涉嫌违规
1秒前
liz发布了新的文献求助10
1秒前
善学以致用应助camellia采纳,获得10
2秒前
2秒前
江彪完成签到,获得积分10
3秒前
3秒前
rick3455发布了新的文献求助50
3秒前
彭于晏应助故意的秋烟采纳,获得10
4秒前
化雨完成签到,获得积分10
4秒前
5秒前
Archy发布了新的文献求助10
5秒前
高贵的帽子完成签到 ,获得积分20
5秒前
快乐小狗发布了新的文献求助30
5秒前
心心哈完成签到 ,获得积分10
6秒前
红茶完成签到 ,获得积分10
6秒前
江彪发布了新的文献求助10
7秒前
cdercder应助Andy采纳,获得10
7秒前
summer应助香菜采纳,获得10
7秒前
wanci应助鳗鱼绿蝶采纳,获得10
7秒前
7秒前
7秒前
小马甲应助浩二采纳,获得10
8秒前
8秒前
9秒前
9秒前
坚定背包完成签到,获得积分10
9秒前
afleve完成签到,获得积分10
9秒前
10秒前
Noreason发布了新的文献求助10
10秒前
10秒前
何1发布了新的文献求助10
10秒前
精明觅山完成签到,获得积分10
10秒前
科研通AI2S应助paojiao不辣采纳,获得10
11秒前
脑洞疼应助dsd采纳,获得10
11秒前
11秒前
张绪基完成签到 ,获得积分10
12秒前
12秒前
lizhiqian2024发布了新的文献求助10
13秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806041
求助须知:如何正确求助?哪些是违规求助? 3350870
关于积分的说明 10351903
捐赠科研通 3066760
什么是DOI,文献DOI怎么找? 1684143
邀请新用户注册赠送积分活动 809333
科研通“疑难数据库(出版商)”最低求助积分说明 765463