Predicting Heavy Metal Adsorption on Soil with Machine Learning and Mapping Global Distribution of Soil Adsorption Capacities

吸附 土壤水分 重金属 金属 环境化学 决策树 土壤科学 化学 环境科学 计算机科学 机器学习 有机化学
作者
Hongrui Yang,Kuan Huang,Kai Zhang,Qihao Weng,Huichun Zhang,Feier Wang
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:55 (20): 14316-14328 被引量:195
标识
DOI:10.1021/acs.est.1c02479
摘要

Studying heavy metal adsorption on soil is important for understanding the fate of heavy metals and properly assessing the related environmental risks. Existing experimental methods and traditional models for quantifying adsorption, however, are time-consuming and ineffective. In this study, we developed machine learning models for the soil adsorption of six heavy metals (Cd(II), Cr(VI), Cu(II), Pb(II), Ni(II), and Zn(II)) using 4420 data points (1105 soils) extracted from 150 journal articles. After a comprehensive comparison, our results showed that the gradient boosting decision tree had the best performance for a combined model based on all the data. The Shapley additive explanation method was used to identify the feature importance and the effects of these features on the adsorption, based on which six independent models were developed for the six metals to achieve better model performance than the combined model. Using these independent models, the global distribution of heavy metal adsorption capacities on soils was predicted with known soil properties. Reversed models, including one combined model for all the six metals and six independent models, were also built using the same data sets to predict the heavy metal concentration in water when the adsorbed amount is known for a soil/sediment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fusucheng完成签到,获得积分10
刚刚
刚刚
1秒前
着急的小松鼠完成签到,获得积分10
1秒前
2秒前
拾玖发布了新的文献求助10
2秒前
韩麒嘉完成签到 ,获得积分10
2秒前
2秒前
2秒前
躞蹀完成签到,获得积分10
2秒前
2秒前
MIku发布了新的文献求助10
2秒前
李健应助科研通管家采纳,获得10
2秒前
聪明面包应助科研通管家采纳,获得10
2秒前
酷炫立果关注了科研通微信公众号
3秒前
小明应助科研通管家采纳,获得10
3秒前
zchchem发布了新的文献求助10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
3秒前
小蘑菇应助科研通管家采纳,获得30
3秒前
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
3秒前
Xl完成签到,获得积分10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
无花果应助科研通管家采纳,获得10
4秒前
suiyi发布了新的文献求助20
4秒前
5秒前
。。。完成签到,获得积分10
5秒前
Tao完成签到,获得积分10
6秒前
wuludie应助awoe采纳,获得10
6秒前
司空元正完成签到 ,获得积分10
7秒前
7秒前
zhang发布了新的文献求助10
7秒前
袁小圆发布了新的文献求助30
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4928278
求助须知:如何正确求助?哪些是违规求助? 4197425
关于积分的说明 13038287
捐赠科研通 3970322
什么是DOI,文献DOI怎么找? 2175720
邀请新用户注册赠送积分活动 1192848
关于科研通互助平台的介绍 1103624