LSDDL: Layer-Wise Sparsification for Distributed Deep Learning

计算机科学 可扩展性 人工智能 随机梯度下降算法 架空(工程) 瓶颈 人工神经网络 深度学习 机器学习 分布式计算 过程(计算) 利用 计算机工程 操作系统 嵌入式系统 数据库 计算机安全
作者
Yuxi Hong,Peng Han
出处
期刊:Big Data Research [Elsevier BV]
卷期号:26: 100272-100272 被引量:3
标识
DOI:10.1016/j.bdr.2021.100272
摘要

With an escalating arms race to adopt machine learning (ML) into diverse application domains, there is an urgent need to efficiently support distributed machine learning (ML) algorithms. As Stochastic Gradient Descent (SGD) is widely adopted in training ML models, the performance bottleneck of distributed ML would be the communication cost to transmit gradients through the network. While a lot of existing studies aim at compressing the gradient so as to reduce the overhead of network communication, they ignore the model structure in the process of compression. As a result, while they could reduce the communication time, they would result in serious computation discontinuity for deep neural networks, which will lower the prediction accuracy. In this paper, we propose LSDDL, a scalable and light-weighted method to boost the training process of deep learning models in shared-nothing environment. The cornerstone of LSDDL lies on the observation that different layers in a neural network have different importance in the process of decompression. To exploit this insight, we devise a sparsification strategy to compress the gradient of deep neural networks which can preserve the structural information of the model. In addition, we provide a series of compression techniques to further reduce the communication overhead and optimize the overall performance. We implement our LSDDL framework in the PyTorch system and encapsulate it as a user friendly API. We validate our proposed techniques by training several real models on a large cluster. Experimental results show that the communication time of LSDDL is up to 5.43 times less than the original SGD without losing much accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整齐的忆彤完成签到,获得积分10
刚刚
刚刚
SW发布了新的文献求助10
1秒前
2秒前
谦让的之柔完成签到,获得积分10
3秒前
5秒前
5秒前
崔世强发布了新的文献求助10
5秒前
文房四宝发布了新的文献求助10
5秒前
6秒前
6秒前
Zhao发布了新的文献求助30
8秒前
kingwill应助小蚂蚁采纳,获得20
9秒前
科目三应助Cindy采纳,获得10
9秒前
kingwill应助好久不见采纳,获得20
9秒前
10秒前
10秒前
qcl发布了新的文献求助10
11秒前
ttt完成签到,获得积分10
11秒前
11秒前
zlz完成签到,获得积分10
12秒前
英姑应助lvsehx采纳,获得10
14秒前
SW完成签到,获得积分10
16秒前
林子发布了新的文献求助10
16秒前
17秒前
甜甜的莞发布了新的文献求助10
18秒前
Hello应助YJ888采纳,获得10
19秒前
核桃应助小芋泥采纳,获得10
20秒前
21秒前
21秒前
22秒前
Lu发布了新的文献求助10
23秒前
yudandan@CJLU发布了新的文献求助10
23秒前
科研大作战完成签到,获得积分10
24秒前
niuge02完成签到,获得积分10
24秒前
xy小侠女发布了新的文献求助10
25秒前
背后青梦完成签到,获得积分10
26秒前
27秒前
852应助Zhoey采纳,获得10
27秒前
简简完成签到,获得积分10
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787762
求助须知:如何正确求助?哪些是违规求助? 3333338
关于积分的说明 10261468
捐赠科研通 3049082
什么是DOI,文献DOI怎么找? 1673412
邀请新用户注册赠送积分活动 801891
科研通“疑难数据库(出版商)”最低求助积分说明 760402