已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Probabilistic 4D predictive model from in-room surrogates using conditional generative networks for image-guided radiotherapy

计算机科学 人工智能 稳健性(进化) 生成模型 概率逻辑 人口 可扩展性 机器学习 模式识别(心理学) 计算机视觉 生成语法 人口学 社会学 基因 数据库 化学 生物化学
作者
Liset Vázquez Romaguera,Tal Mezheritsky,Rihab Mansour,Jean‐François Carrier,Samuel Kadoury
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:74: 102250-102250 被引量:24
标识
DOI:10.1016/j.media.2021.102250
摘要

Shape and location organ variability induced by respiration constitutes one of the main challenges during dose delivery in radiotherapy. Providing up-to-date volumetric information during treatment can improve tumor tracking, thereby increasing treatment efficiency and reducing damage to healthy tissue. We propose a novel probabilistic model to address the problem of volumetric estimation with scalable predictive horizon from image-based surrogates during radiotherapy treatments, thus enabling out-of-plane tracking of targets. This problem is formulated as a conditional learning task, where the predictive variables are the 2D surrogate images and a pre-operative static 3D volume. The model learns a distribution of realistic motion fields over a population dataset. Simultaneously, a seq-2-seq inspired temporal mechanism acts over the surrogate images yielding extrapolated-in-time representations. The phase-specific motion distributions are associated with the predicted temporal representations, allowing the recovery of dense organ deformation in multiple times. Due to its generative nature, this model enables uncertainty estimations by sampling the latent space multiple times. Furthermore, it can be readily personalized to a new subject via fine-tuning, and does not require inter-subject correspondences. The proposed model was evaluated on free-breathing 4D MRI and ultrasound datasets from 25 healthy volunteers, as well as on 11 cancer patients. A navigator-based data augmentation strategy was used during the slice reordering process to increase model robustness against inter-cycle variability. The patient data was used as a hold-out test set. Our approach yields volumetric prediction from image surrogates with a mean error of 1.67 ± 1.68 mm and 2.17 ± 0.82 mm in unseen cases of the patient MRI and US datasets, respectively. Moreover, model personalization yields a mean landmark error of 1.4 ± 1.1 mm compared to ground truth annotations in the volunteer MRI dataset, with statistically significant improvements over state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王大壮完成签到,获得积分10
1秒前
橘子完成签到,获得积分10
1秒前
冰魂应助丰富的复天采纳,获得20
1秒前
1秒前
源源完成签到 ,获得积分10
2秒前
edzb完成签到,获得积分10
3秒前
szd完成签到,获得积分10
3秒前
LiliHe发布了新的文献求助50
3秒前
zzj发布了新的文献求助10
5秒前
5秒前
万能图书馆应助Chain采纳,获得10
6秒前
可靠大地关注了科研通微信公众号
6秒前
摸鱼划水发布了新的文献求助10
7秒前
机智剑封完成签到 ,获得积分10
8秒前
挖掘机应助CNS冲采纳,获得50
8秒前
研友_VZG7GZ应助www采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
Hello应助happy采纳,获得10
9秒前
安详寒蕾完成签到,获得积分20
10秒前
科研通AI2S应助易槐采纳,获得10
10秒前
gao完成签到,获得积分10
11秒前
11秒前
Amb1tionG完成签到 ,获得积分10
13秒前
飘逸的渊思完成签到,获得积分10
16秒前
zxicewolf发布了新的文献求助10
16秒前
heheheli完成签到,获得积分10
18秒前
权箴完成签到,获得积分10
18秒前
19秒前
Tyranny完成签到 ,获得积分10
20秒前
20秒前
笨笨小蝴蝶完成签到,获得积分10
21秒前
小趴菜完成签到 ,获得积分10
21秒前
亮亮来咯发布了新的文献求助10
21秒前
23秒前
23秒前
所所应助ddd777采纳,获得10
24秒前
shanshan发布了新的文献求助10
24秒前
cdercder发布了新的文献求助30
24秒前
24秒前
25秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中国翻译词典 1000
Astrochemistry 1000
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3874989
求助须知:如何正确求助?哪些是违规求助? 3417447
关于积分的说明 10703478
捐赠科研通 3141809
什么是DOI,文献DOI怎么找? 1733637
邀请新用户注册赠送积分活动 836096
科研通“疑难数据库(出版商)”最低求助积分说明 782371