Machine learning predicts fretting and fatigue key mechanical properties

微动 材料科学 断裂力学 结构工程 安定 打滑(空气动力学) 有限元法 圆柱 裂缝闭合 机械
作者
Maysam B. Gorji,Alix de Pannemaecker,Samuel Spevack
出处
期刊:International Journal of Mechanical Sciences [Elsevier BV]
卷期号:: 106949-106949 被引量:3
标识
DOI:10.1016/j.ijmecsci.2021.106949
摘要

• Fretting crack lengths and corresponding SIF were predicted using Machine Learning • Plain fretting tests were performed on cylinder/flat configurations in partial slip • Both short and long crack arrest responses were achieved for the studied C-Mn steel • FE models were used to compute the fretting Δ K th for each crack arrest condition • Very good correlations were obtained using a neural network-based model The present work uses machine learning to predict fretting crack lengths and corresponding stress intensity factors (SIF) under partial slip conditions resulting in crack arrest. Plain fretting tests were first performed on cylinder/flat configurations in partial slip, in which the test sample was flat. Adjusting contact pressure and cylinder radius, both short and long crack arrest responses were achieved for the studied C-Mn steel. Finite element (FE) analysis was then used to compute the fretting SIF threshold Δ K th for each arrested cylinder/plane fretting crack condition. Under elastic fretting conditions, a coupled approach combining complete FE simulations modeling the crack and Rice's fracture integrals was used. When plasticity needed to be considered, an indirect method was applied, using FE simulations without the crack and classical weight functions once elastic shakedown was reached (decoupled approach). The fretting SIF threshold Δ K th could then be extrapolated to estimate the fatigue long crack SIF threshold Δ K 0 when the fretting crack was long enough. The novelty of this research work resides in the use of Machine Learning to predict the key mechanical parameters introduced above. A backpropagation algorithm with Bayesian regularization was used to identify a shallow neural network model based on just fourteen experiments. A neural network-based model was then employed to describe fretting crack lengths and corresponding SIF of the studied alloy as a function of the fretting contact radius, the maximum surface pressure, and shear traction. Perfect correlations were obtained to predict both crack depth and associated SIF threshold. An investigation was performed to determine the reliability with which samples sizes matching the count of the available experimental points can be used to predict fretting crack lengths and corresponding SIF. A Monte-Carlo bootstrapping method was used to estimate the output confidence interval corresponding to specific target inputs. This analysis provided optimistic results as relatively small datasets may be sufficient for accurate predictions. The neural network described short to long crack behaviors under elastic or elastoplastic conditions, making it a valuable tool for predicting fatigue long crack Δ K 0 based on fretting experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
复杂冬亦完成签到,获得积分10
刚刚
1秒前
研友_LjDyNZ发布了新的文献求助10
2秒前
小飞飞应助czj采纳,获得20
3秒前
cxw完成签到,获得积分20
5秒前
大知闲闲发布了新的文献求助10
7秒前
HFT完成签到,获得积分10
7秒前
香蕉觅云应助赵鑫雅采纳,获得10
7秒前
冷静1等待完成签到 ,获得积分10
10秒前
Owen应助卡卡采纳,获得10
13秒前
14秒前
科研通AI5应助WangY1263采纳,获得30
15秒前
17秒前
深情安青应助海阔云高采纳,获得10
18秒前
19秒前
21秒前
大力奇迹完成签到,获得积分10
22秒前
23秒前
24秒前
卜娜娜发布了新的文献求助10
24秒前
RATHER完成签到,获得积分10
26秒前
WangY1263发布了新的文献求助30
28秒前
卜娜娜完成签到,获得积分20
28秒前
29秒前
U2应助cyy采纳,获得10
29秒前
温良和风完成签到,获得积分10
30秒前
崔洪瑞完成签到,获得积分10
30秒前
赵鑫雅发布了新的文献求助10
31秒前
科研废物完成签到 ,获得积分10
32秒前
Kelly1426完成签到,获得积分10
32秒前
我是大彩笔完成签到,获得积分10
34秒前
不着四六的岁月完成签到,获得积分10
34秒前
卡卡发布了新的文献求助10
35秒前
微笑的映波完成签到,获得积分10
35秒前
疯狂的幼南完成签到,获得积分10
35秒前
36秒前
xjy完成签到,获得积分10
38秒前
ninomae完成签到 ,获得积分10
38秒前
入戏太深完成签到,获得积分10
39秒前
qianmo完成签到,获得积分10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779930
求助须知:如何正确求助?哪些是违规求助? 3325323
关于积分的说明 10222572
捐赠科研通 3040476
什么是DOI,文献DOI怎么找? 1668879
邀请新用户注册赠送积分活动 798850
科研通“疑难数据库(出版商)”最低求助积分说明 758612