快速傅里叶变换
计算机科学
卷积神经网络
断层(地质)
模拟电子学
人工智能
频域
电子工程
算法
电子线路
工程类
电气工程
计算机视觉
地质学
地震学
作者
Bo Sun,Wanzhou Xu,Qing Yang
出处
期刊:2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)
日期:2021-07-01
卷期号:: 305-310
被引量:2
标识
DOI:10.1109/icnisc54316.2021.00061
摘要
To improve the performance of analog circuit fault diagnosis, an ensemble fault diagnosis method combining fast Fourier transform (FFT), convolutional neural network (CNN) and long and short-term memory (LSTM) is proposed. First, FFT is used to convert data to the frequency domain. Then special zone features are obtained by CNN network. Finally LSTM network is used to complete the fault diagnosis of the analog circuit. Experiment on CSTV analog circuit shows that FFT-CNN-LSTM can be used to improve the quality of analog circuit fault diagnosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI