清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

TSCRNN: A novel classification scheme of encrypted traffic based on flow spatiotemporal features for efficient management of IIoT

计算机科学 交通分类 加密 数据挖掘 服务质量 互联网流量 预处理器 互联网 人工智能 实时计算 计算机网络 万维网
作者
Kunda Lin,Xiaolong Xu,Honghao Gao
出处
期刊:Computer Networks [Elsevier BV]
卷期号:190: 107974-107974 被引量:122
标识
DOI:10.1016/j.comnet.2021.107974
摘要

In the Industrial Internet of Things (IIoT) in the 5G era, the growth of smart devices will generate a large amount of data traffic, bringing a huge challenge of network traffic classification, which is the prerequisite of IIoT traffic engineering, quality of service (QoS), cyberspace security, etc. It is difficult for current traffic classification methods to distinguish encrypted dataflow and design effective handcraft features. In this paper, a novel identification scheme of encrypted traffic, TSCRNN, is proposed to automatically extract features for efficient traffic classification, which is based on spatiotemporal features. TSCRNN includes the preprocessing phase and the classification phase. In the preprocessing phase, raw traffic data are processed with flow segmentation, sampling, and vectorization, etc. To solve the classification problem of long time flow, sampling strategies are used to collect samples from the middle of the long-lived flow. In the classification phase, TSCRNN extracts abstract spatial features by CNN and then introduces stack bidirectional LSTM to learn the temporal characteristics. The experiments were performed on the dataset ISCXTor2016. The experimental results show that TSCRNN outperforms other typical methods in all scenarios, which achieves the accuracy up to 99.4% and 95.0% respectively in Tor/nonTor binary classification tasks and sixteen classification tasks. Furthermore, TSCRNN is applied to other real network datasets obtained the satisfactory performance, which validates its feasibility and universality. It means that TSCRNN can effectively identify encrypted and anonymous traffic, provide a fine-grained traffic characterization mechanism, which will support the development of core technologies in the Industrial Internet of Things.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蝎子莱莱xth完成签到,获得积分10
45秒前
合不着完成签到 ,获得积分10
46秒前
氢锂钠钾铷铯钫完成签到,获得积分10
49秒前
Square完成签到,获得积分10
56秒前
小马同学应助Ji采纳,获得10
59秒前
2分钟前
辰昜发布了新的文献求助10
2分钟前
zzhui完成签到,获得积分10
2分钟前
YifanWang应助科研通管家采纳,获得30
3分钟前
踏实滑板应助科研通管家采纳,获得10
3分钟前
自然亦凝完成签到,获得积分10
3分钟前
上官若男应助Una采纳,获得10
3分钟前
wanci应助蜜茶饿了采纳,获得10
3分钟前
3分钟前
Una发布了新的文献求助10
3分钟前
jojo发布了新的文献求助10
3分钟前
Una完成签到,获得积分10
3分钟前
紫熊发布了新的文献求助10
4分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
踏实滑板应助科研通管家采纳,获得10
5分钟前
紫熊完成签到,获得积分10
5分钟前
jojo发布了新的文献求助30
6分钟前
arniu2008完成签到,获得积分20
6分钟前
jojo完成签到,获得积分20
6分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
天天快乐应助Zx采纳,获得10
7分钟前
时尚半仙完成签到 ,获得积分10
7分钟前
方白秋完成签到,获得积分0
7分钟前
juliar完成签到 ,获得积分10
8分钟前
8分钟前
蜜茶饿了发布了新的文献求助10
8分钟前
冷傲半邪完成签到,获得积分10
8分钟前
9分钟前
ceeray23应助科研通管家采纳,获得10
9分钟前
ceeray23应助科研通管家采纳,获得10
9分钟前
一盏壶完成签到,获得积分10
9分钟前
9分钟前
正在努力的学术小垃圾完成签到 ,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5187345
求助须知:如何正确求助?哪些是违规求助? 4372134
关于积分的说明 13612960
捐赠科研通 4225175
什么是DOI,文献DOI怎么找? 2317392
邀请新用户注册赠送积分活动 1316056
关于科研通互助平台的介绍 1265568