Fruit Classification Utilizing a Robotic Gripper with Integrated Sensors and Adaptive Grasping

人工智能 朴素贝叶斯分类器 机器人 触觉传感器 夹持器 分类器(UML) 支持向量机 接触力 计算机科学 计算机视觉 模式识别(心理学) 工程类 抓住 机械工程 量子力学 软件工程 物理
作者
Jintao Zhang,Shuang Lai,Huahua Yu,Erjie Wang,Xizhe Wang,Zixuan Zhu
出处
期刊:Mathematical Problems in Engineering [Hindawi Publishing Corporation]
卷期号:2021: 1-15 被引量:20
标识
DOI:10.1155/2021/7157763
摘要

As the core component of agricultural robots, robotic grippers are widely used for plucking, picking, and harvesting fruits and vegetables. Secure grasping is a severe challenge in agricultural applications because of the variation in the shape and hardness of agricultural products during maturation, as well as their variety and delicacy. In this study, a fruit identification method utilizing an adaptive gripper with tactile sensing and machine learning algorithms is reported. An adaptive robotic gripper is designed and manufactured to perform adaptive grasping. A tactile sensing information acquisition circuit is built, and force and bending sensors are integrated into the robotic gripper to measure the contact force distribution on the contact surface and the deformation of the soft fingers. A robotic manipulator platform is developed to collect the tactile sensing data in the grasping process. The performance of the random forest (RF), k-nearest neighbor (KNN), support vector classification (SVC), naive Bayes (NB), linear discriminant analysis (LDA), and ridge regression (RR) classifiers in identifying and classifying five types of fruits using the adaptive gripper is evaluated and compared. The RF classifier achieves the highest accuracy of 98%, while the accuracies of the other classifiers vary from 74% to 97%. The experiment illustrates that efficient and accurate fruit identification can be realized with the adaptive gripper and machine learning classifiers, and that the proposed method can provide a reference for controlling the grasping force and planning the robotic motion in the plucking, picking, and harvesting of fruits and vegetables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小锦章发布了新的文献求助10
刚刚
新威宝贝发布了新的文献求助10
1秒前
2秒前
2秒前
李爱国应助achenghn采纳,获得10
3秒前
6秒前
SciGPT应助瑶625采纳,获得10
7秒前
小锦章完成签到,获得积分10
7秒前
suozi发布了新的文献求助30
8秒前
lhxing发布了新的文献求助10
9秒前
单薄店员发布了新的文献求助10
10秒前
11秒前
11秒前
qwer发布了新的文献求助10
13秒前
王志新发布了新的文献求助10
14秒前
huangqian发布了新的文献求助10
20秒前
华仔应助xzx采纳,获得10
22秒前
22秒前
二三应助不二宋采纳,获得50
23秒前
24秒前
量子星尘发布了新的文献求助10
25秒前
拼搏的败完成签到 ,获得积分10
25秒前
27秒前
NexusExplorer应助科研通管家采纳,获得10
28秒前
Owen应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
灵巧南露应助科研通管家采纳,获得10
28秒前
小马甲应助科研通管家采纳,获得10
28秒前
Jasper应助科研通管家采纳,获得10
28秒前
共享精神应助科研通管家采纳,获得10
28秒前
NexusExplorer应助科研通管家采纳,获得10
28秒前
大个应助科研通管家采纳,获得10
28秒前
SYLH应助科研通管家采纳,获得30
28秒前
慕青应助科研通管家采纳,获得10
28秒前
负责小蜜蜂完成签到,获得积分10
28秒前
领导范儿应助科研通管家采纳,获得10
28秒前
汉堡包应助科研通管家采纳,获得10
28秒前
29秒前
29秒前
29秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Global Eyelash Assessment scale (GEA) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4026760
求助须知:如何正确求助?哪些是违规求助? 3566296
关于积分的说明 11351720
捐赠科研通 3297515
什么是DOI,文献DOI怎么找? 1816034
邀请新用户注册赠送积分活动 890437
科研通“疑难数据库(出版商)”最低求助积分说明 813620