Feasibility of magnetic resonance imaging-based radiomics features for preoperative prediction of extrahepatic cholangiocarcinoma stage

无线电技术 磁共振成像 旁侵犯 线性判别分析 规范化(社会学) 接收机工作特性 医学 人工智能 分割 放射科 阶段(地层学) 模式识别(心理学) 计算机科学 癌症 地质学 社会学 古生物学 内科学 人类学
作者
Xinqiao Huang,Jian Shu,Yulan Yan,Xin Chen,Chunmei Yang,Tiejun Zhou,Man Li
出处
期刊:European Journal of Cancer [Elsevier BV]
卷期号:155: 227-235 被引量:18
标识
DOI:10.1016/j.ejca.2021.06.053
摘要

The aim of this study is to develop and test radiomics models based on magnetic resonance imaging (MRI) to preoperatively and respectively predict the T stage, perineural invasion, and microvascular invasion of extrahepatic cholangiocarcinoma (eCCA) through a non-invasive approach.This research included 101 eCCA patients (29-83 years; 45 females and 56 males) between August 2011 and December 2019. Radiomics features were retrospectively extracted from T1-weighted imaging, T2-weighted imaging, diffusion-weighted imaging, and apparent diffusion coefficient map using MaZda software. The region of interest was manually delineated in the largest section on four MRI images as ground truth while keeping 1-2 mm margin to tumor border, respectively. Pretreatment, dimension reduction method, and classifiers were used to establish radiomics signatures for assessing three pathological characteristics of eCCA. Finally, independent training and testing datasets were used to assess radiomics signature performance based on receiver operating characteristic curve analysis, accuracy, precision, sensitivity, and specificity.This study extracted 1208 radiomics features from four MRI images of each patient. The best performing radiomics signatures for assessing the T stage, perineural invasion, and microvascular invasion were respectively produced by L1_normalization + linear discriminant analysis (LDA) + logistic regression, Box_Cox transformer + LDA + K-nearest neighbor, and L2_normalization + LDA + AdaBoost. The area under the curve values of the radiomics signatures for predicting the training and testing cohorts in each subgroup were respectively 1 and 0.962 (T stage), 1 and 1 (both perineural invasion and microvascular invasion).These proposed radiomic models based on MR images had powerful performance and high potential in predicting T stage, perineural, and microvascular invasion of eCCA.Prognostic study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
君莫笑发布了新的文献求助10
1秒前
LLLLLL发布了新的文献求助10
1秒前
3秒前
6秒前
我是老大应助水水采纳,获得10
6秒前
你在教我做事啊完成签到 ,获得积分10
7秒前
Eliauk完成签到 ,获得积分10
7秒前
笑傲江湖完成签到,获得积分10
7秒前
沐啊发布了新的文献求助10
8秒前
8秒前
9秒前
淡淡乐巧完成签到 ,获得积分10
11秒前
糊涂的剑发布了新的文献求助10
14秒前
15秒前
mmm完成签到,获得积分10
15秒前
落雨发布了新的文献求助10
15秒前
16秒前
司徒南瓜饼完成签到,获得积分10
16秒前
16秒前
17秒前
庄杰发布了新的文献求助10
20秒前
充电宝应助糊涂的剑采纳,获得10
20秒前
水水发布了新的文献求助10
20秒前
20秒前
1111发布了新的文献求助10
21秒前
再坚持一天就退学完成签到,获得积分10
22秒前
ewmmel发布了新的文献求助10
25秒前
26秒前
水水完成签到,获得积分10
26秒前
26秒前
一只火鸡材料学者完成签到,获得积分10
26秒前
小汤完成签到 ,获得积分10
27秒前
可爱丹烟完成签到,获得积分10
27秒前
orixero应助hhhh采纳,获得10
28秒前
可爱丹烟发布了新的文献求助10
30秒前
破睡应是不夜侯完成签到,获得积分10
32秒前
甜甜完成签到,获得积分10
35秒前
叶佳钰关注了科研通微信公众号
36秒前
沦落而发布了新的文献求助10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4812366
求助须知:如何正确求助?哪些是违规求助? 4125096
关于积分的说明 12764283
捐赠科研通 3862042
什么是DOI,文献DOI怎么找? 2125718
邀请新用户注册赠送积分活动 1147312
关于科研通互助平台的介绍 1041072