Anti-swing radial basis neuro-fuzzy linear quadratic regulator control of double link rotary pendulum

控制理论(社会学) 线性二次调节器 调节器 模糊逻辑 数学 控制器(灌溉) 状态变量 计算机科学 最优控制 数学优化 人工智能 物理 控制(管理) 热力学 化学 基因 生物 生物化学 农学
作者
Zied Ben Hazem,Mohammad Javad Fotuhi,Zafer Bingül
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part I: Journal Of Systems And Control Engineering [SAGE]
卷期号:236 (3): 531-545 被引量:11
标识
DOI:10.1177/09596518211046452
摘要

In this article, a radial basis neuro-fuzzy linear quadratic regulator controller is developed for the anti-swing control of a double link rotary pendulum system. The objective of this work is to study the radial basis neuro-fuzzy linear quadratic regulator controller and to compare it with a fuzzy linear quadratic regulator and the linear quadratic regulator controllers. In the proposed radial basis neuro-fuzzy linear quadratic regulator controllers, the positions and velocities of state variables multiplied by their linear quadratic regulator gains are trained using two radial basis neural networks architecture. The output of the two radial basis neural networks is used as the input variables of the fuzzy controller. The novel architecture of the radial basis neuro-fuzzy controller is developed in order to obtain better control performance than the classical adaptive neuro-fuzzy controller. To determine the control performance of the anti-swing controllers, different control parameters are computed. According to the comparative results, the anti-swing radial basis neuro-fuzzy linear quadratic regulator controller yields improved results than fuzzy linear quadratic regulator and linear quadratic regulator. Furthermore, the performance of the three controllers developed was compared based on robustness analysis under external force disturbance. The results obtained here indicate that the anti-swing radial basis neuro-fuzzy linear quadratic regulator controller product has better performance than other controllers in terms of vibration suppression ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
在水一方应助读书的时候采纳,获得10
2秒前
bkagyin应助研友_nVqwxL采纳,获得10
2秒前
NexusExplorer应助NXK采纳,获得10
3秒前
妞妞牛传奇完成签到 ,获得积分10
3秒前
华仔应助棋士采纳,获得10
4秒前
luxury_wings关注了科研通微信公众号
5秒前
5秒前
科研通AI2S应助1111采纳,获得10
5秒前
轨迹应助土豆采纳,获得30
5秒前
王小磊完成签到,获得积分10
5秒前
认真盼夏完成签到,获得积分10
7秒前
ziyue发布了新的文献求助10
7秒前
kunkun完成签到,获得积分10
7秒前
7秒前
9秒前
9秒前
10秒前
10秒前
打打应助文艺映之采纳,获得10
10秒前
liujingbin发布了新的文献求助20
11秒前
11秒前
缥缈一刀发布了新的文献求助10
11秒前
math-naive完成签到,获得积分10
12秒前
勤恳易真发布了新的文献求助10
12秒前
12秒前
所所应助温婉的谷菱采纳,获得10
14秒前
md2356发布了新的文献求助10
14秒前
一口一个汤包完成签到 ,获得积分10
15秒前
Hello应助MJ采纳,获得30
15秒前
有梦想的乌龟mua完成签到,获得积分10
15秒前
孙漪发布了新的文献求助10
15秒前
dingm2发布了新的文献求助30
15秒前
GGGrigor完成签到,获得积分0
15秒前
17秒前
研友_8Y2DXL完成签到,获得积分10
17秒前
17秒前
18秒前
ww完成签到 ,获得积分10
18秒前
涂鹏辉完成签到 ,获得积分10
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693692
求助须知:如何正确求助?哪些是违规求助? 5093905
关于积分的说明 15212233
捐赠科研通 4850531
什么是DOI,文献DOI怎么找? 2601836
邀请新用户注册赠送积分活动 1553651
关于科研通互助平台的介绍 1511610