离子半径
材料科学
半径
信息学
材料信息学
领域(数学)
工作(物理)
计算机科学
表(数据库)
离子键合
离子
数据挖掘
热力学
健康信息学
数学
物理
工程类
量子力学
纯数学
护理部
工程信息学
公共卫生
电气工程
医学
计算机安全
作者
Ahmer A.B. Baloch,Saad M. Alqahtani,Faisal Mumtaz,Ali H. Muqaibel,Sergey N. Rashkeev,Fahhad H. Alharbi
标识
DOI:10.1103/physrevmaterials.5.043804
摘要
In computational material design, ionic radius is one of the most important physical parameters used to predict material properties. Motivated by the progress in computational materials science and material informatics, we extend the renowned Shannon's table from 475 ions to 987 ions. Accordingly, a rigorous Machine Learning (ML) approach is employed to extend the ionic radii table using all possible combinations of Oxidation States (OS) and Coordination Numbers (CN) available in crystallographic repositories. An ionic-radius regression model for Shannon's database is developed as a function of the period number, the valence orbital configuration, OS, CN, and Ionization Potential. In the Gaussian Process Regression (GPR) model, the reached R-square $R^2$ accuracy is 99\% while the root mean square error of radii is 0.0332 \AA. The optimized GPR model is then employed for predicting a new set of ionic radii for uncommon combinations of OS and CN extracted by harnessing crystal structures from materials project databases. The generated data is consolidated with the reputable Shannon's data and is made available online in a database repository \url{https://cmd-ml.github.io/}.
科研通智能强力驱动
Strongly Powered by AbleSci AI