交换电流密度
面(心理学)
Crystal(编程语言)
电流密度
材料科学
电池(电)
电极
功率密度
电化学
电流(流体)
各向异性
电阻抗
电化学动力学
密度泛函理论
光谱密度
化学物理
动力学
分析化学(期刊)
限制电流
晶体生长
球形填料
活化能
晶体结构
纳米技术
电流
基质(水族馆)
能量密度
作者
Xu Li,Jun Huang,Le Yang,Hao-Sen Chen,Wei-Li Song,Shuqiang Jiao,Daining Fang,Xu Li,Jun Huang,Le Yang,Hao-Sen Chen,Wei-Li Song,Shuqiang Jiao,Daining Fang
标识
DOI:10.1038/s41467-025-65068-5
摘要
Improving the reaction kinetics of LiNi0.8Mn0.1Co0.1O2 is of great importance for realizing batteries with both high energy and power density. The promotion of electrochemical kinetics, i.e. exchange current density of LiNi0.8Mn0.1Co0.1O2 materials, is a significant strategy. Because there is great variation in exchange current density of different crystal facets, it is critical to fundamentally understand the intrinsic exchange current density of crystal facets for designing high-rate electrode materials. To quantitatively analyze the intrinsic exchange current density of six representative crystal facets on LiNi0.8Mn0.1Co0.1O2 particles, we develop a quantitative single-particle method based on the combination of the electrochemical impedance spectrum and three-dimensional geometric reconstruction on the single-particle scale. Here we show, compared to the exchange current density of (003) facet of LiNi0.8Mn0.1Co0.1O2 particles, interestingly, the exchange current density of (201) facet exhibits a 25-fold higher value (~1.50 mA/cm2), which is used to guide the nano-structure design of anisotropic core-shell LiNi0.8Mn0.1Co0.1O2 particles with improved rate performance (500 cycles) at discharge rate of 10 C (6 min).
科研通智能强力驱动
Strongly Powered by AbleSci AI