已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cognitive Foundations for Reasoning and Their Manifestation in LLMs

作者
Kargupta, Priyanka,Li, Shuyue Stella,WANG Haocheng,Lee Jinu,Chen Shan,Ahia, Orevaoghene,Light, Dean,Griffiths, Thomas L.,Kleiman-Weiner, Max,Han, Jiawei,Celikyilmaz, Asli,Tsvetkov, Yulia
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2511.16660
摘要

Large language models solve complex problems yet fail on simpler variants, suggesting they achieve correct outputs through mechanisms fundamentally different from human reasoning. We synthesize cognitive science research into a taxonomy of 28 cognitive elements spanning computational constraints, meta-cognitive controls, knowledge representations, and transformation operations, then analyze their behavioral manifestations in reasoning traces. We propose a fine-grained cognitive evaluation framework and conduct the first large-scale analysis of 170K traces from 17 models across text, vision, and audio modalities, alongside 54 human think-aloud traces, which we make publicly available. Our analysis reveals systematic structural differences: humans employ hierarchical nesting and meta-cognitive monitoring while models rely on shallow forward chaining, with divergence most pronounced on ill-structured problems. Meta-analysis of 1,598 LLM reasoning papers reveals the research community concentrates on easily quantifiable behaviors (sequential organization: 55%, decomposition: 60%) while neglecting meta-cognitive controls (self-awareness: 16%, evaluation: 8%) that correlate with success. Models possess behavioral repertoires associated with success but fail to deploy them spontaneously. Leveraging these patterns, we develop test-time reasoning guidance that automatically scaffold successful structures, improving performance by up to 60% on complex problems. By bridging cognitive science and LLM research, we establish a foundation for developing models that reason through principled cognitive mechanisms rather than brittle spurious reasoning shortcuts or memorization, opening new directions for both improving model capabilities and testing theories of human cognition at scale.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyy完成签到 ,获得积分10
刚刚
1秒前
皇甫成完成签到 ,获得积分10
1秒前
xiaozhang完成签到 ,获得积分10
2秒前
2秒前
科研通AI6应助cchh采纳,获得10
3秒前
吴彦祖完成签到,获得积分10
3秒前
胡豆完成签到,获得积分10
4秒前
4秒前
maning001a发布了新的文献求助10
6秒前
科研通AI6应助竞鹤采纳,获得10
6秒前
7秒前
8秒前
又欠发布了新的文献求助10
9秒前
古木完成签到,获得积分10
10秒前
yw完成签到,获得积分10
10秒前
香蕉觅云应助su采纳,获得10
11秒前
Firmian完成签到,获得积分10
13秒前
笛卡尔完成签到,获得积分10
13秒前
大胆老三发布了新的文献求助10
15秒前
15秒前
今后应助zsw采纳,获得10
15秒前
maxiangyu完成签到 ,获得积分10
15秒前
如意猕猴桃应助666采纳,获得10
15秒前
HAHA_发布了新的文献求助10
16秒前
Random完成签到,获得积分10
16秒前
16秒前
高兴书兰发布了新的文献求助10
17秒前
19秒前
19秒前
20秒前
opxl发布了新的文献求助10
20秒前
Seagull发布了新的文献求助20
21秒前
Lingzi完成签到,获得积分10
23秒前
古木发布了新的文献求助10
23秒前
小二郎应助又欠采纳,获得10
24秒前
24秒前
27秒前
SciGPT应助豆子采纳,获得10
27秒前
Jenny发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312261
求助须知:如何正确求助?哪些是违规求助? 4456030
关于积分的说明 13865116
捐赠科研通 4344428
什么是DOI,文献DOI怎么找? 2385847
邀请新用户注册赠送积分活动 1380221
关于科研通互助平台的介绍 1348578