Interpretable machine learning model integrating CT radiomics, CTR, and clinical features for EGFR mutation prediction in ≤3 cm lung adenocarcinoma nodules

无线电技术 医学 特征选择 人工智能 可解释性 随机森林 特征(语言学) 腺癌 接收机工作特性 突变 放射科 机器学习 逻辑回归 计算机科学 肿瘤科 基因分型 临床实习 模式识别(心理学) Lasso(编程语言) 医学影像学 个性化医疗 回顾性队列研究 特征提取 内科学 肺癌
作者
Wenhan Cai,Yiming Liu,Kai Zhao,Zirui Zhu,Jiamei Jin,Herui Han,Mingchuan Hu,Xiangming Qiu,Jiaxin Wen,Zhiqiang Xue
标识
DOI:10.6084/m9.figshare.30921070
摘要

Non-invasive prediction of EGFR mutation status in lung adenocarcinoma (LUAD) is critical for treatment planning, particularly in small pulmonary nodules where tissue genotyping is limited. However, the consolidation-to-tumor ratio (CTR), a clinically relevant imaging biomarker, has rarely been incorporated into radiomics-based models. To develop and validate an interpretable CT radiomics model incorporating CTR and clinical features for predicting EGFR mutation status in LUAD patients with nodules ≤3 cm. In this retrospective study included 492 patients with pathologically confirmed LUAD who underwent preoperative non-contrast chest CT between January 2017 and December 2022. Tumors were manually segmented for radiomic feature extraction, and CTR was measured for each lesion. Radiomic textures were computed with PyRadiomics using a fixed gray-level bin width. Feature selection was performed using analysis of variance and mutual information filtering followed by RFE with a random-forest base estimator. Three random forest classifiers were constructed: a radiomics-only model, a clinical-only model, and a combined radiomics-clinical model. Model performance was assessed by AUC with 95% CI, and interpretability was evaluated using SHapley Additive exPlanations (SHAP). The combined model achieved the best performance (AUC, 0.74 [95% CI: 0.69–0.79] in training; 0.76 [95% CI: 0.66–0.85] in testing), outperforming the radiomics-only (AUC, 0.69) and clinical-only (AUC, 0.60) models in the testing cohort. CTR was the most influential feature according to SHAP analysis. A interpretable radiomics model integrating CTR and clinical features enables effective non-invasive prediction of EGFR mutation status in small LUAD nodules, supporting molecular risk stratification when tissue genotyping is unavailable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助zhushif采纳,获得10
刚刚
刚刚
城北徐公主完成签到,获得积分10
刚刚
刚刚
量子星尘发布了新的文献求助10
2秒前
someone发布了新的文献求助10
3秒前
4秒前
优雅的水晶男孩完成签到,获得积分10
4秒前
追寻涵阳发布了新的文献求助30
5秒前
静oo完成签到,获得积分10
6秒前
10秒前
someone完成签到,获得积分10
11秒前
高佳升完成签到,获得积分10
11秒前
无语的巨人完成签到 ,获得积分10
12秒前
13秒前
深情安青应助Luvvv采纳,获得10
13秒前
BJYX发布了新的文献求助10
15秒前
惠储完成签到,获得积分10
15秒前
舒适傲白完成签到,获得积分10
16秒前
科研通AI6应助帅气的宽采纳,获得10
18秒前
18秒前
18秒前
18秒前
南枝完成签到,获得积分10
19秒前
惠储发布了新的文献求助10
19秒前
21秒前
Akim应助SamXia采纳,获得10
21秒前
sansronds完成签到,获得积分10
21秒前
木叶完成签到,获得积分10
22秒前
做不了一点科研完成签到 ,获得积分10
22秒前
ltt1230发布了新的文献求助10
22秒前
22秒前
yuan完成签到,获得积分10
22秒前
梨花完成签到,获得积分10
23秒前
shenyu完成签到 ,获得积分10
23秒前
24秒前
辣椒完成签到 ,获得积分10
25秒前
25秒前
hui完成签到,获得积分10
26秒前
dodo完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600162
求助须知:如何正确求助?哪些是违规求助? 4685896
关于积分的说明 14840412
捐赠科研通 4675610
什么是DOI,文献DOI怎么找? 2538581
邀请新用户注册赠送积分活动 1505689
关于科研通互助平台的介绍 1471144