ABT-DDI: A Graph Transformer Model with Atomic-Bond Structure Awareness for Drug–Drug Interaction Prediction

作者
Xinyi Guo,Jianbo Qiao,Siqi Chen,Junru Jin,Ding Wang,Wenjia Gao,Feifei Cui,Zilong Zhang,Hua Shi,Zhongmin Yan,Leyi Wei,Xinbo Jiang
出处
期刊:ACS Synthetic Biology [American Chemical Society]
标识
DOI:10.1021/acssynbio.5c00748
摘要

The widespread use of polypharmacy has significantly increased the risk of drug-drug interactions (DDIs), underscoring the critical need for developing accurate drug-drug interaction events (DDIEs) prediction methods. However, current DDI studies inadequately account for the intrinsic relationships between atoms and bonds in drug molecules, while also overlooking the three-dimensional conformational information on these molecules. To address these limitations, we propose ABT-DDI, an innovative DDI prediction model based on a graph transformer architecture, capable of extracting multimodal information from drug molecules to predict DDI risk levels. ABT-DDI introduces the pioneering systematic modeling of spatial relationships including atom-atom, atom-bond, and bond-bond interactions through a multiscale attention mechanism, which effectively captures atomic and bonding interaction patterns to enhance substructure perception. Furthermore, we introduce two dedicated virtual nodes representing global atom and bond embeddings, which systematically aggregate and propagate overall structural information to refine high-level feature learning. Additionally, the model integrates molecular fingerprint features with 3D spatial distance descriptors to establish a comprehensive molecular representation system. Experimental results demonstrate that our model significantly outperforms existing state-of-the-art methods across multiple metrics on two benchmark data sets, showing important application value in drug development and polypharmacy risk warning systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
像风如你完成签到 ,获得积分10
1秒前
小鲤鱼发布了新的文献求助10
1秒前
1秒前
yuyu完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
7秒前
陶醉毛豆发布了新的文献求助10
7秒前
xiaxia完成签到 ,获得积分10
8秒前
夏姬宁静发布了新的文献求助10
8秒前
8秒前
10秒前
风中小懒虫完成签到,获得积分10
10秒前
xnkl发布了新的文献求助10
11秒前
jason发布了新的文献求助10
11秒前
12秒前
fhg完成签到 ,获得积分10
12秒前
汉堡包应助徐一卓采纳,获得10
13秒前
Nell发布了新的文献求助10
13秒前
13秒前
15秒前
路人丨安完成签到,获得积分10
16秒前
马可菠萝的账号完成签到,获得积分10
17秒前
18秒前
路人丨安发布了新的文献求助10
18秒前
roro熊发布了新的文献求助10
19秒前
20秒前
甜甜凌珍完成签到,获得积分10
23秒前
Pheonix1998完成签到,获得积分10
24秒前
青霜发布了新的文献求助20
25秒前
虚心的清发布了新的文献求助10
25秒前
雷红完成签到 ,获得积分10
26秒前
明亮棉花糖完成签到 ,获得积分10
26秒前
CodeCraft应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
Owen应助科研通管家采纳,获得10
27秒前
27秒前
开心完成签到 ,获得积分10
28秒前
贪玩含海完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565514
求助须知:如何正确求助?哪些是违规求助? 4650580
关于积分的说明 14691851
捐赠科研通 4592480
什么是DOI,文献DOI怎么找? 2519651
邀请新用户注册赠送积分活动 1492028
关于科研通互助平台的介绍 1463244