Interpretable Machine Learning Prediction Model for Predicting Mortality Risk of ICU Patients With Pressure Ulcers Based on the Braden Scale: A Clinical Study Based on MIMIC‐IV

医学 比例(比率) 机器学习 人工智能 计算机科学 量子力学 物理
作者
Binyan Chen,Jinghao Zhou,Shiyi Chen,Fei Wang,Ping Liu,Ying Xu,Pan Huang,Fuman Cai
出处
期刊:Journal of Clinical Nursing [Wiley]
卷期号:34 (8): 3353-3369
标识
DOI:10.1111/jocn.17860
摘要

ABSTRACT Aims This study was to create an interpretable machine learning model to predict the risk of mortality within 90 days for ICU patients suffering from pressure ulcers. Design We retrospectively analysed 1774 ICU pressure ulcer patients from the Medical Information Mart for Intensive Care (MIMIC)‐IV database. Methods We used the LASSO regression and the Boruta algorithm for feature selection. The dataset was split into training and test sets at a 7:3 ratio for constructing machine learning models. We employed logistic regression and nine other machine learning algorithms to build the prediction model. Restricted cubic spline (RCS) was used to analyse the linear relationship between the Braden score and the outcome, whereas the SHAP (Shapley additive explanations) method was applied to visualise the model's characteristics. Results This study compared the predictive ability of the Braden Scale with other scoring systems (SOFA, APSIII, Charlson, SAPSII). The results showed that the Braden Scale model had the highest performance, and SHAP analysis indicated that the Braden Scale is an important influencing factor for the risk of 90‐day mortality in the ICU. The restricted cubic spline curve demonstrated a significant negative correlation between the Braden Scale and mortality. Subgroup analysis showed no significant interaction effects among subgroups except for age. Conclusions The machine learning‐enhanced Braden Scale has been developed to forecast the 90‐day mortality risk for ICU patients suffering from pressure ulcers, and its efficacy as a clinically reliable tool has been substantiated. Patient or Public Contribution Patients or public members were not directly involved in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助sjk采纳,获得10
1秒前
nico发布了新的文献求助10
1秒前
丽丽完成签到,获得积分10
2秒前
aeson关注了科研通微信公众号
2秒前
量子星尘发布了新的文献求助10
2秒前
零零零零完成签到,获得积分10
2秒前
qcl完成签到,获得积分10
3秒前
3秒前
jia完成签到 ,获得积分20
4秒前
4秒前
希望天下0贩的0应助su采纳,获得10
4秒前
无私心情完成签到,获得积分10
5秒前
QQ完成签到,获得积分10
7秒前
跳不起来的大神完成签到 ,获得积分10
7秒前
8秒前
无私心情发布了新的文献求助10
9秒前
9秒前
Hello应助健壮的映之采纳,获得10
11秒前
yxl发布了新的文献求助10
12秒前
燕燕完成签到 ,获得积分10
13秒前
自信向梦完成签到,获得积分10
13秒前
Hey发布了新的文献求助10
13秒前
13秒前
香蕉觅云应助linyu采纳,获得10
13秒前
ning完成签到,获得积分10
14秒前
路冰完成签到,获得积分10
15秒前
我要毕业完成签到,获得积分10
16秒前
wyhx完成签到 ,获得积分10
16秒前
xd关闭了xd文献求助
16秒前
butterflycat完成签到,获得积分10
17秒前
游唐关注了科研通微信公众号
18秒前
18秒前
科研狗发布了新的文献求助10
18秒前
20秒前
桐桐应助su采纳,获得10
20秒前
SciGPT应助吱吱采纳,获得10
22秒前
豆豆发布了新的文献求助10
22秒前
浪子应助Hey采纳,获得10
24秒前
AN发布了新的文献求助10
24秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600866
求助须知:如何正确求助?哪些是违规求助? 4686434
关于积分的说明 14843743
捐赠科研通 4678603
什么是DOI,文献DOI怎么找? 2539007
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241