PI3K/AKT/mTOR通路
阻塞(统计)
上皮-间质转换
化学
蛋白激酶B
细胞生物学
信号转导
癌症研究
纤维化
过渡(遗传学)
医学
内科学
生物
生物化学
计算机科学
计算机网络
基因
作者
Yijie Yang,Jia‐Wei Shen,Yanting Li,Xinzhu Chen,Gaoqin Liu,Peirong Lu
摘要
Subretinal fibrosis (SRF) represents a significant contributor to irreversible vision loss in patients with neovascular age-related macular degeneration (nAMD). This study aimed to elucidate the underlying mechanism of SRF and identify potential therapeutic targets. The SRF model was established using a two-stage laser-induced protocol in C57BL/6J mice. RNA-seq analysis was conducted to identify differentially expressed genes (DEGs) at 10 days and 30 days post-second laser. Quantitative RT-PCR was used to validate the expression levels of selected DEGs including zinc-alpha-2-glycoprotein 1 (AZGP1). Recombinant AZGP1 (rAZGP1) was intravitreally administrated to investigate its effects on SRF. The ARPE-19 cells were used to demonstrate the role of AZGP1 in modulating epithelial-mesenchymal transition (EMT). RNA-seq of RPE/choroid complex identified a total of 66 DEGs between samples collected at 10 days and 30 days post-second laser compared with controls (log2(fold change) ≥ 1, false discovery rate [FDR] < 0.05), with Azgp1 being one of the most significant downregulated genes. Intravitreal injection of rAZGP1 markedly reduced collagen I and CD31 positive areas in RPE/choroid flat-mounts. Co-localization of AZGP1 and RPE65 was observed in patients with nAMD (GSE135922) and SRF mouse models. Treatment with rAZGP1 resulted in significantly lower expressions of collagen I, α-SMA, and fibronectin in ARPE-19 cells after TGFβ1 induction. Both knockdown and overexpression studies demonstrated that AZGP1 regulated the PI3K/AKT signaling pathway within ARPE-19 cells. The abnormal expression pattern of AZGP1 is critical for the development of SRF. Exogenous supplementation with AZGP1 may represent a promising strategy for ameliorating SRF by inhibiting EMT within RPE through the PI3K/AKT pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI