An Interpretable Deep Learning Approach Integrating PatchTST, Quantile Regression, and SHAP for Dam Displacement Interval Prediction

分位数回归 区间(图论) 预测区间 分位数 回归 流离失所(心理学) 统计 数学 置信区间 心理学 组合数学 心理治疗师
作者
Kang Zhang,Sen Zheng
出处
期刊:Water [MDPI AG]
卷期号:17 (11): 1661-1661 被引量:1
标识
DOI:10.3390/w17111661
摘要

Accurate prediction of dam displacement is essential for structural safety and risk management. To comprehensively address the “accuracy–uncertainty–interpretability” trilemma in dam displacement prediction, this study proposes a deep learning framework that integrates Patch Time Series Transformer (PatchTST), Sand Cat Swarm Optimization (SCSO), Quantile Regression (QR), and SHapley Additive exPlanations (SHAP). The proposed framework first employs PatchTST to capture the nonlinear temporal dependencies between multiple monitoring factors and dam displacement, while SCSO is utilized to adaptively optimize key hyperparameters, enabling the construction of a high-precision point prediction model. On this basis, QR is introduced to model the distributional uncertainty of displacement responses and to generate confidence-based prediction intervals, facilitating the evaluation of displacement anomalies. Furthermore, SHAP is incorporated to quantify the marginal contribution of each input factor to the model outputs, thereby enhancing interpretability and aligning model behavior with physical domain knowledge. The framework is validated using multi-year monitoring data from a double-curvature arch dam located in Southwest China. Comparative experiments demonstrate that the proposed model outperforms five well-established machine learning methods and the traditional linear regression method in terms of point prediction accuracy, reliability of interval estimation, and false alarm rate, exhibiting strong generalization and robustness. The SHAP-based analysis further reveals that water pressure variations and seasonal temperature cycles are the dominant factors influencing radial displacement, consistent with known structural deformation mechanisms. These findings affirm the physical consistency and engineering applicability of the proposed framework, offering a deployable and trustworthy solution for intelligent dam health monitoring and uncertainty-aware forecasting in safety-critical infrastructures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lele完成签到,获得积分10
1秒前
1秒前
1秒前
大瓶子完成签到,获得积分10
1秒前
2秒前
2秒前
调皮的蝴蝶完成签到 ,获得积分10
3秒前
Levon完成签到 ,获得积分10
3秒前
温与暖完成签到,获得积分10
3秒前
3秒前
精灵梦完成签到,获得积分10
3秒前
元宝完成签到 ,获得积分10
4秒前
6秒前
li完成签到 ,获得积分10
6秒前
MJJJ发布了新的文献求助10
6秒前
搜集达人应助兰月满楼采纳,获得10
6秒前
Wudifairy发布了新的文献求助30
7秒前
SoulG1RLzzZ完成签到,获得积分10
7秒前
8秒前
hhh完成签到,获得积分10
8秒前
8秒前
搜集达人应助美丽蕨菜子采纳,获得10
9秒前
更好的我完成签到,获得积分10
9秒前
胖鲤鱼完成签到,获得积分10
10秒前
Yingkun_Xu完成签到,获得积分10
11秒前
李健应助超帅水杯采纳,获得10
11秒前
wqmdd完成签到,获得积分10
11秒前
尊敬友易完成签到,获得积分10
12秒前
诚心谷南发布了新的文献求助10
12秒前
传奇3应助猪肉超人菜婴蚊采纳,获得10
12秒前
wuxunxun2015发布了新的文献求助10
12秒前
DLDL完成签到,获得积分10
12秒前
Jasper应助SoulG1RLzzZ采纳,获得10
12秒前
yeah发布了新的文献求助10
13秒前
15秒前
认真柠檬完成签到,获得积分10
18秒前
隐形曼青应助淡定发卡采纳,获得10
18秒前
hainguyen26完成签到,获得积分20
18秒前
11完成签到 ,获得积分10
20秒前
蛀牙牙完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604322
求助须知:如何正确求助?哪些是违规求助? 4689080
关于积分的说明 14857878
捐赠科研通 4697618
什么是DOI,文献DOI怎么找? 2541249
邀请新用户注册赠送积分活动 1507374
关于科研通互助平台的介绍 1471874