亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning-Driven Identification of Exosome-Related Genes in Head and Neck Squamous Cell Carcinoma for Prognostic Evaluation and Drug Response Prediction

头颈部鳞状细胞癌 Lasso(编程语言) 随机森林 小桶 接收机工作特性 计算生物学 机器学习 人工智能 特征(语言学) 基因 生物信息学 计算机科学 生物 基因表达 头颈部癌 转录组 癌症 遗传学 哲学 万维网 语言学
作者
Hua Cai,Liuqing Zhou,Yao Hu,Tao Zhou
出处
期刊:Biomedicines [Multidisciplinary Digital Publishing Institute]
卷期号:13 (4): 780-780
标识
DOI:10.3390/biomedicines13040780
摘要

Background: This study integrated four Gene Expression Omnibus (GEO) datasets to identify disease-specific feature genes in head and neck squamous cell carcinoma (HNSCC) through differential expression analysis with batch effect correction. Methods: The GeneCards database was used to find genes related to exosomes, and samples were categorized into groups with high and low expression levels based on these feature genes. Functional and pathway enrichment analyses (GO, KEGG, and GSEA) were used to investigate the possible biological mechanisms underlying feature genes. A predictive model was produced by using machine learning algorithms (LASSO regression, SVM, and random forest) to find disease-specific feature genes. Receiver operating characteristic (ROC) curve analysis was used to assess the model’s effectiveness. The diagnostic model showed excellent predictive accuracy through external data GSE83519 validation. Results: This analysis highlighted 22 genes with significant differential expression. A predictive model based on five important genes (AGRN, TSPAN6, MMP9, HBA1, and PFN2) was produced by using machine learning algorithms. MMP9 and TSPAN6 showed relatively high predictive performance. Using the ssGSEA algorithm, three key genes (MMP9, AGRN, and PFN2) were identified as strongly linked to immune regulation, immune response suppression, and critical signaling pathways involved in HNSCC progression. Matching HNSCC feature gene expression profiles with DSigDB compound signatures uncovered potential therapeutic targets. Molecular docking simulations identified ligands with high binding affinity and stability, notably C5 and Hoechst 33258, which were prioritized for further validation and potential drug development. Conclusions: This study employs a novel diagnostic model for HNSCC constructed using machine learning technology, which can provide support for the early diagnosis of HNSCC and thus contribute to improving patient treatment plans and clinical management strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玩命的糖豆完成签到 ,获得积分10
1秒前
3秒前
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
YifanWang应助科研通管家采纳,获得10
10秒前
科研01应助科研通管家采纳,获得10
10秒前
10秒前
WangJL完成签到 ,获得积分10
11秒前
Ava应助zyw0326采纳,获得10
17秒前
斯文渊思完成签到,获得积分20
20秒前
LAYWING完成签到 ,获得积分10
33秒前
木偶完成签到 ,获得积分10
38秒前
时尚飞阳完成签到,获得积分10
40秒前
ZaZa完成签到,获得积分10
42秒前
应俊完成签到 ,获得积分10
43秒前
Pearl完成签到,获得积分20
48秒前
54秒前
57秒前
十文字发布了新的文献求助10
57秒前
ZhaoPeng完成签到,获得积分0
57秒前
58秒前
天才小徐徐完成签到,获得积分10
59秒前
明天见完成签到 ,获得积分10
1分钟前
刘梦瑶发布了新的文献求助10
1分钟前
十文字完成签到,获得积分10
1分钟前
刘梦瑶完成签到,获得积分10
1分钟前
小谭完成签到,获得积分10
1分钟前
墨然然完成签到 ,获得积分10
1分钟前
liuqi完成签到 ,获得积分10
1分钟前
1分钟前
axiao发布了新的文献求助20
1分钟前
zyw0326发布了新的文献求助10
1分钟前
1分钟前
爆浆蛋卷完成签到 ,获得积分10
1分钟前
鸣蜩十三完成签到,获得积分10
1分钟前
我爱学习完成签到 ,获得积分10
1分钟前
典雅的纸飞机完成签到 ,获得积分10
1分钟前
轻松小张完成签到,获得积分0
2分钟前
Victor完成签到,获得积分10
2分钟前
小白白完成签到,获得积分10
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Impact of water dispenser establishment on drinking water availability and health status of peri-urban community 560
Implantable Technologies 500
Theories of Human Development 400
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3919850
求助须知:如何正确求助?哪些是违规求助? 3464927
关于积分的说明 10935137
捐赠科研通 3193177
什么是DOI,文献DOI怎么找? 1764470
邀请新用户注册赠送积分活动 854936
科研通“疑难数据库(出版商)”最低求助积分说明 794524