Cluster structure augmented deep nonnegative matrix factorization with low-rank tensor learning

聚类分析 数学 张量(固有定义) 理论计算机科学 矩阵分解 特征学习 图形 人工智能 模式识别(心理学) 计算机科学 纯数学 物理 特征向量 量子力学
作者
Bo Zhong,Jian-Sheng Wu,Wei Huang,Wei‐Shi Zheng
出处
期刊:Information Sciences [Elsevier BV]
卷期号:670: 120585-120585 被引量:2
标识
DOI:10.1016/j.ins.2024.120585
摘要

Clustering approaches based on deep nonnegative matrix factorization have received significant attention because it can learn hierarchical semantics from data in a layer-wise manner. However, latent representation learning and clustering are two separate processes in these models, leading to information loss and sub-optimal clusterings. Furthermore, if data contain complex structure or noise, the pre-defined graph in data space will not be precise enough for graph-regularized deep nonnegative matrix factorization models. Moreover, most of them maintain the similarity graph at the top layer, neglecting the information covered by other layers. In this paper, Cluster Structure Augmented Deep Nonnegative Matrix Factorization with Low-rank Tensor Learning is proposed. First, as representations at different layers cover different data abstractions, a learning mechanism is leveraged to generate multiple local similarity graphs based on representations from different layers, thus maintaining diversity across layers. Then, a low-rank third-order tensor is constructed by stacking these graphs to capture the high-order consistency across layers, thus capturing the intrinsic property of data. Third, clustering is integrated into the framework, allowing the cluster structure to facilitate multi-layer matrix factorization and graph structure learning, thereby generating discriminative representations. Experimental results on several datasets demonstrate that the proposed model outperforms several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红莲墨生完成签到,获得积分10
1秒前
北风完成签到,获得积分10
2秒前
2秒前
小蘑菇应助kiminonawa采纳,获得10
2秒前
无花果应助英俊溪灵采纳,获得10
2秒前
3秒前
传奇3应助小心爱吃肉采纳,获得10
3秒前
3秒前
清脆愫完成签到 ,获得积分10
3秒前
scq完成签到 ,获得积分10
4秒前
6秒前
田様应助smin采纳,获得10
6秒前
6秒前
俭朴的发带完成签到,获得积分10
7秒前
8秒前
huoxing完成签到 ,获得积分10
8秒前
bkagyin应助荡秋千的猴子采纳,获得10
9秒前
9秒前
大龙哥886应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
11秒前
Orange应助科研通管家采纳,获得10
11秒前
Unito应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
css1997完成签到 ,获得积分10
11秒前
12秒前
12秒前
star发布了新的文献求助10
13秒前
13秒前
13秒前
时尚又蓝发布了新的文献求助10
14秒前
一条虫gg完成签到,获得积分10
15秒前
周zhou发布了新的文献求助10
15秒前
16秒前
16秒前
小花排草应助medlive2020采纳,获得30
17秒前
小花排草应助medlive2020采纳,获得30
17秒前
小心爱吃肉完成签到,获得积分10
17秒前
英俊溪灵发布了新的文献求助10
17秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Logical form: From GB to Minimalism 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4185974
求助须知:如何正确求助?哪些是违规求助? 3721998
关于积分的说明 11728410
捐赠科研通 3400151
什么是DOI,文献DOI怎么找? 1865640
邀请新用户注册赠送积分活动 922748
科研通“疑难数据库(出版商)”最低求助积分说明 834219