材料科学
钙钛矿(结构)
单层
纳米技术
带隙
光电子学
结晶学
化学
作者
Mingyang Gao,Xuehui Xu,Hong Tian,Peng Ran,Ziyan Jia,Yirong Su,Juan Hui,Xianjin Gan,Shuo Zhao,Haiming Zhu,Hui Lv,Yang Yang
标识
DOI:10.1021/acs.jpclett.4c00814
摘要
Wide-bandgap (WBG) perovskites play a crucial role in perovskite-based tandem cells. Despite recent advances using self-assembled monolayers (SAMs) to facilitate efficiency breakthroughs, achieving precise control over the deposition of such ultrathin layers remains a significant challenge for large-scale fabrication of WBG perovskite and, consequently, for the tandem modules. To address these challenges, we propose a facile method that integrates MeO-2PACz and Me-4PACz in optimal proportions (Mixed SAMs) into the perovskite precursor solution, enabling the simultaneous codeposition of WBG perovskite and SAMs. This technique promotes the spontaneous formation of charge-selective contacts while reducing defect densities by coordinating phosphonic acid groups with the unbonded Pb2+ ions at the bottom interface. The resulting WBG perovskite solar cells (PSCs) demonstrated a power conversion efficiency of 19.31% for small-area devices (0.0585 cm2) and 17.63% for large-area modules (19.34 cm2), highlighting the potential of this codeposition strategy for fabricating high-performance, large-area WBG PSCs with enhanced reproducibility. These findings offer valuable insights for advancing WBG PSCs and the scalable fabrication of modules.
科研通智能强力驱动
Strongly Powered by AbleSci AI