Tinnitus classification based on resting-state functional connectivity using a convolutional neural network architecture

耳鸣 默认模式网络 卷积神经网络 显著性(神经科学) 静息状态功能磁共振成像 计算机科学 功能连接 人工智能 神经影像学 听力学 心理学 神经科学 模式识别(心理学) 医学
作者
Qianhui Xu,Leilei Zhou,Chunhua Xing,Xiaomin Xu,Yuan Feng,Han Lv,Fei Zhao,Yu‐Chen Chen,Yixi Cai
出处
期刊:NeuroImage [Elsevier BV]
卷期号:290: 120566-120566 被引量:2
标识
DOI:10.1016/j.neuroimage.2024.120566
摘要

Many studies have investigated aberrant functional connectivity (FC) using resting-state functional MRI (rs-fMRI) in subjective tinnitus patients. However, no studies have verified the efficacy of resting-state FC as a diagnostic imaging marker. We established a convolutional neural network (CNN) model based on rs-fMRI FC to distinguish tinnitus patients from healthy controls, providing guidance and fast diagnostic tools for the clinical diagnosis of subjective tinnitus.A CNN architecture was trained on rs-fMRI data from 100 tinnitus patients and 100 healthy controls using an asymmetric convolutional layer. Additionally, a traditional machine learning model and a transfer learning model were included for comparison with the CNN, and each of the three models was tested on three different brain atlases.Of the three models, the CNN model outperformed the other two models with the highest area under the curve, especially on the Dos_160 atlas (AUC = 0.944). Meanwhile, the model with the best classification performance highlights the crucial role of the default mode network, salience network, and sensorimotor network in distinguishing between normal controls and patients with subjective tinnitus.Our CNN model could appropriately tackle the diagnosis of tinnitus patients using rs-fMRI and confirmed the diagnostic value of FC as measured by rs-fMRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mc1220完成签到,获得积分10
刚刚
1秒前
科研通AI5应助刺儿采纳,获得10
1秒前
metoo发布了新的文献求助10
2秒前
2秒前
扒开皮皮完成签到,获得积分10
3秒前
chiweiyoung完成签到,获得积分10
3秒前
扶风追梦发布了新的文献求助10
3秒前
5秒前
LLLLL完成签到,获得积分20
5秒前
扒开皮皮发布了新的文献求助10
6秒前
zzz关注了科研通微信公众号
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
帅仁123完成签到,获得积分20
9秒前
似宁发布了新的文献求助10
10秒前
黄健伟发布了新的文献求助10
11秒前
SYLH应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
David应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
13秒前
14秒前
虔三愿发布了新的文献求助10
14秒前
SYLH应助科研通管家采纳,获得20
14秒前
霖昭应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
烂漫青槐应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843913
求助须知:如何正确求助?哪些是违规求助? 3386217
关于积分的说明 10544489
捐赠科研通 3107034
什么是DOI,文献DOI怎么找? 1711392
邀请新用户注册赠送积分活动 824081
科研通“疑难数据库(出版商)”最低求助积分说明 774434