State of health prediction of lithium-ion batteries under early partial data based on IWOA-BiLSTM with single feature

超参数 稳健性(进化) 偏最小二乘回归 荷电状态 计算机科学 人工智能 机器学习 化学 电池(电) 物理 生物化学 基因 量子力学 功率(物理)
作者
Yan Ma,Jiaqi Li,Jinwu Gao,Hong Chen
出处
期刊:Energy [Elsevier BV]
卷期号:295: 131085-131085 被引量:27
标识
DOI:10.1016/j.energy.2024.131085
摘要

The safe and stable operation of electric vehicles relies on fast and accurate predictions of the state of health (SOH) of the battery. To address challenges such as limited availability of extensive battery aging data or data with informative missingness, the novel SOH prediction method based on the improved method whale optimization algorithm (IWOA)-Bi-directional Long Short-Term Memory (BiLSTM) with strong correlated single aging feature is proposed. Firstly, to accurately predict the accelerated degradation process of the battery capacity, the knee-point in the capacity degradation curve is identified as a starting point for SOH prediction by Bacon-Watts model. Next, a small number of early partial aging features of the battery cycle are extracted, such as time of charging or discharging, and various correlation analysis methods are used to select the single feature with the highest correlation with capacity degradation to reduce the computational complexity of multiple feature factors. Finally, BiLSTM model is established to predict battery SOH. In addition, in order to improve the efficiency of the adjustment for hyperparameters, IWOA is proposed to optimize the BiLSTM's hyperparameters. Compared to the traditional Whale Optimization Algorithm (WOA), IWOA has better global search capability, robustness, and efficiency through enhancements in search strategy, mutation operation, adaptive parameter adjustment, and performance optimization. The proposed method is validated using battery datasets from NASA and CALCE. Compared with BiLSTM and WOA-BiLSTM, the simulation results indicate that the MSE of SOH prediction based on IWOA-BiLSTM method mostly remains below 0.05, and index of agreement (IA) basically maintains higher than 99%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dandelion完成签到,获得积分10
刚刚
2秒前
打打应助过过过采纳,获得10
2秒前
haha9haha完成签到,获得积分10
5秒前
6秒前
科研通AI5应助goldNAN采纳,获得10
6秒前
Maisie完成签到 ,获得积分10
8秒前
科研通AI5应助伊斯塔战灵采纳,获得10
9秒前
高高白曼舞完成签到,获得积分10
10秒前
penghui完成签到,获得积分10
13秒前
haha9haha发布了新的文献求助10
14秒前
里里完成签到,获得积分10
14秒前
一条裸游的鱼完成签到,获得积分10
14秒前
16秒前
17秒前
20秒前
Chosen_1完成签到,获得积分10
22秒前
23秒前
24秒前
34秒前
momo123完成签到 ,获得积分10
34秒前
35秒前
35秒前
华仔应助断章采纳,获得10
36秒前
失眠的班发布了新的文献求助10
39秒前
Viv发布了新的文献求助10
39秒前
Koko完成签到,获得积分10
40秒前
hunajx发布了新的文献求助10
40秒前
44秒前
酷波er应助librahapper采纳,获得10
44秒前
Owen应助Koko采纳,获得10
44秒前
图图完成签到,获得积分10
45秒前
大胆笑翠完成签到,获得积分10
46秒前
西门迎天发布了新的文献求助50
50秒前
52秒前
断章发布了新的文献求助10
55秒前
zlx完成签到 ,获得积分10
59秒前
努力发文不会累完成签到,获得积分10
1分钟前
1分钟前
兴奋芷完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777977
求助须知:如何正确求助?哪些是违规求助? 3323580
关于积分的说明 10215083
捐赠科研通 3038764
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798329
科研通“疑难数据库(出版商)”最低求助积分说明 758315