Multi-task learning for segmentation and classification of breast tumors from ultrasound images

计算机科学 分割 人工智能 模式识别(心理学) 深度学习 特征(语言学) 任务(项目管理) 编码器 特征提取 机器学习 经济 管理 哲学 语言学 操作系统
作者
Qiqi He,Qiuju Yang,Hang Su,Yixuan Wang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:173: 108319-108319 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108319
摘要

Segmentation and classification of breast tumors are critical components of breast ultrasound (BUS) computer-aided diagnosis (CAD), which significantly improves the diagnostic accuracy of breast cancer. However, the characteristics of tumor regions in BUS images, such as non-uniform intensity distributions, ambiguous or missing boundaries, and varying tumor shapes and sizes, pose significant challenges to automated segmentation and classification solutions. Many previous studies have proposed multi-task learning methods to jointly tackle tumor segmentation and classification by sharing the features extracted by the encoder. Unfortunately, this often introduces redundant or misleading information, which hinders effective feature exploitation and adversely affects performance. To address this issue, we present ACSNet, a novel multi-task learning network designed to optimize tumor segmentation and classification in BUS images. The segmentation network incorporates a novel gate unit to allow optimal transfer of valuable contextual information from the encoder to the decoder. In addition, we develop the Deformable Spatial Attention Module (DSAModule) to improve segmentation accuracy by overcoming the limitations of conventional convolution in dealing with morphological variations of tumors. In the classification branch, multi-scale feature extraction and channel attention mechanisms are integrated to discriminate between benign and malignant breast tumors. Experiments on two publicly available BUS datasets demonstrate that ACSNet not only outperforms mainstream multi-task learning methods for both breast tumor segmentation and classification tasks, but also achieves state-of-the-art results for BUS tumor segmentation. Code and models are available at https://github.com/qqhe-frank/BUS-segmentation-and-classification.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助JN采纳,获得10
刚刚
SciGPT应助哭泣以筠采纳,获得10
刚刚
科研通AI5应助zhanyuji采纳,获得10
1秒前
积极的康乃馨完成签到 ,获得积分20
1秒前
雨山发布了新的文献求助10
2秒前
2秒前
BQ发布了新的文献求助10
2秒前
3秒前
韦觅松完成签到,获得积分10
3秒前
杨晓白发布了新的文献求助20
3秒前
Lance先生发布了新的文献求助10
4秒前
王根基发布了新的文献求助10
4秒前
小马甲应助刘大强采纳,获得10
5秒前
hyl完成签到,获得积分10
5秒前
xx发布了新的文献求助10
5秒前
小富发布了新的文献求助10
5秒前
6秒前
Markie完成签到,获得积分10
6秒前
鬼小妞nice完成签到 ,获得积分10
7秒前
7秒前
机灵柚子应助shangx采纳,获得10
8秒前
知昂张完成签到,获得积分20
9秒前
9秒前
9秒前
12秒前
zhanyuji发布了新的文献求助10
12秒前
知昂张发布了新的文献求助10
13秒前
13秒前
王根基完成签到,获得积分10
13秒前
喜羊羊完成签到,获得积分20
13秒前
LL发布了新的文献求助10
14秒前
14秒前
不够萌发布了新的文献求助20
16秒前
小二郎应助兴奋柜子采纳,获得10
17秒前
我是老大应助Alex采纳,获得200
17秒前
毕业顺利发布了新的文献求助10
18秒前
田様应助himan采纳,获得10
19秒前
爆米花应助yumiao采纳,获得10
20秒前
香蕉觅云应助川川采纳,获得10
20秒前
Markie发布了新的文献求助10
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795205
求助须知:如何正确求助?哪些是违规求助? 3340212
关于积分的说明 10299164
捐赠科研通 3056777
什么是DOI,文献DOI怎么找? 1677185
邀请新用户注册赠送积分活动 805246
科研通“疑难数据库(出版商)”最低求助积分说明 762409