Multi-task learning for segmentation and classification of breast tumors from ultrasound images

计算机科学 分割 人工智能 模式识别(心理学) 深度学习 特征(语言学) 任务(项目管理) 编码器 特征提取 机器学习 语言学 操作系统 哲学 经济 管理
作者
Qiqi He,Qiuju Yang,Hang Su,Yixuan Wang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:173: 108319-108319 被引量:22
标识
DOI:10.1016/j.compbiomed.2024.108319
摘要

Segmentation and classification of breast tumors are critical components of breast ultrasound (BUS) computer-aided diagnosis (CAD), which significantly improves the diagnostic accuracy of breast cancer. However, the characteristics of tumor regions in BUS images, such as non-uniform intensity distributions, ambiguous or missing boundaries, and varying tumor shapes and sizes, pose significant challenges to automated segmentation and classification solutions. Many previous studies have proposed multi-task learning methods to jointly tackle tumor segmentation and classification by sharing the features extracted by the encoder. Unfortunately, this often introduces redundant or misleading information, which hinders effective feature exploitation and adversely affects performance. To address this issue, we present ACSNet, a novel multi-task learning network designed to optimize tumor segmentation and classification in BUS images. The segmentation network incorporates a novel gate unit to allow optimal transfer of valuable contextual information from the encoder to the decoder. In addition, we develop the Deformable Spatial Attention Module (DSAModule) to improve segmentation accuracy by overcoming the limitations of conventional convolution in dealing with morphological variations of tumors. In the classification branch, multi-scale feature extraction and channel attention mechanisms are integrated to discriminate between benign and malignant breast tumors. Experiments on two publicly available BUS datasets demonstrate that ACSNet not only outperforms mainstream multi-task learning methods for both breast tumor segmentation and classification tasks, but also achieves state-of-the-art results for BUS tumor segmentation. Code and models are available at https://github.com/qqhe-frank/BUS-segmentation-and-classification.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小龙完成签到 ,获得积分10
刚刚
2秒前
4秒前
aaaa完成签到 ,获得积分10
4秒前
梅特卡夫完成签到,获得积分10
7秒前
初见完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
忧虑的静柏完成签到 ,获得积分10
18秒前
drughunter009完成签到 ,获得积分10
19秒前
芙瑞完成签到 ,获得积分10
21秒前
dajiejie完成签到 ,获得积分10
21秒前
Jzhaoc580完成签到 ,获得积分10
23秒前
今后应助搞怪元彤采纳,获得10
24秒前
热心的冬菱完成签到 ,获得积分10
25秒前
linhuafeng完成签到,获得积分10
26秒前
闫栋完成签到 ,获得积分10
27秒前
aaatan完成签到 ,获得积分10
28秒前
Raymond完成签到,获得积分10
29秒前
byron完成签到 ,获得积分10
29秒前
Wwww完成签到 ,获得积分10
31秒前
言庭兰玉完成签到,获得积分10
31秒前
31秒前
盛夏蔚来完成签到 ,获得积分10
31秒前
31秒前
量子星尘发布了新的文献求助10
32秒前
狂野元枫完成签到 ,获得积分10
32秒前
苗条幻巧完成签到 ,获得积分20
35秒前
搞怪元彤发布了新的文献求助10
37秒前
争气完成签到 ,获得积分10
38秒前
zeannezg完成签到 ,获得积分10
39秒前
舒适的天奇完成签到 ,获得积分10
39秒前
陈咪咪完成签到,获得积分10
43秒前
量子星尘发布了新的文献求助50
45秒前
生动又夏完成签到,获得积分10
46秒前
曲奇吐司完成签到,获得积分10
46秒前
48秒前
子舆完成签到 ,获得积分10
48秒前
开心的若烟完成签到,获得积分10
49秒前
49秒前
清脆圆子完成签到 ,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5093339
求助须知:如何正确求助?哪些是违规求助? 4306976
关于积分的说明 13417433
捐赠科研通 4133171
什么是DOI,文献DOI怎么找? 2264356
邀请新用户注册赠送积分活动 1268004
关于科研通互助平台的介绍 1203813