How Much Can Machines Learn Finance from Chinese Text Data?

计算机科学 公司财务 财务 数据科学 经济
作者
Yang Zhou,Jianqing Fan,Lirong Xue
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:70 (12): 8962-8987 被引量:6
标识
DOI:10.1287/mnsc.2022.01468
摘要

How much can we learn finance directly from text data? This paper presents a new framework for learning textual data based on the factor augmentation model and sparsity regularization, called the factor-augmented regularized model for prediction (FarmPredict), to let machines learn financial returns directly from news. FarmPredict allows the model itself to extract information directly from articles without predefined information, such as dictionaries or pretrained models as in most studies. Using unsupervised learned factors to augment the predictors would benefit our method with a “double-robust” feature: that the machine would learn to balance between individual words or text factors/topics. It also avoids the information loss of factor regression in dimensionality reduction. We apply our model to the Chinese stock market with a large proportion of retail investors by using Chinese news data to predict financial returns. We show that positive sentiments scored by our FarmPredict approach from news generate on average 83 basic points (bps) stock daily excess returns, and negative news has an adverse impact of 26 bps on the days of news announcements, where both effects can last for a few days. This asymmetric effect aligns well with the short-sale constraints in the Chinese equity market. The result shows that the machine-learned prediction does provide sizeable predictive power with an annualized return of 54% at most with a simple investment strategy. Compared with other statistical and machine learning methods, FarmPredict significantly outperforms them on model prediction and portfolio performance. Our study demonstrates the far-reaching potential of using machines to learn text data. This paper was accepted by Kay Giesecke, finance. Funding: This study was supported by the National Natural Science Foundation of China [Grants 71991471, 71991470, and 72204049], the National Key Research and Development Program [Grant 2020YFA0608604], the Shanghai Pujiang Scholar Project [Grant 21PJC010], the Shanghai Science Project [Grant 23692119300], and the China Postdoctoral Science Project [Grants 2019M650076 and 2020T130107]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.01468 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sisea完成签到,获得积分10
1秒前
小吴同学完成签到 ,获得积分10
1秒前
2秒前
叶俊发布了新的文献求助10
2秒前
lq完成签到 ,获得积分10
2秒前
2秒前
Sunny完成签到 ,获得积分0
3秒前
3秒前
3秒前
3秒前
小温w完成签到 ,获得积分10
4秒前
4秒前
Cookies完成签到,获得积分10
5秒前
小远远应助刘慧鑫采纳,获得10
5秒前
赵郑坤完成签到,获得积分10
5秒前
Sene发布了新的文献求助10
5秒前
卢玥沅完成签到 ,获得积分20
5秒前
5秒前
Joejoekey发布了新的文献求助10
6秒前
6秒前
丂枧完成签到,获得积分10
7秒前
7秒前
勤恳风华完成签到,获得积分10
7秒前
7秒前
Hannah完成签到,获得积分10
7秒前
yyt发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
peekaboo完成签到,获得积分10
8秒前
迷人宛发布了新的文献求助10
8秒前
子焱完成签到 ,获得积分10
8秒前
syt发布了新的文献求助10
8秒前
9秒前
Cassie发布了新的文献求助10
9秒前
9秒前
菠菜发布了新的文献求助10
9秒前
kyan发布了新的文献求助10
10秒前
缨绒完成签到 ,获得积分10
10秒前
外向的醉易完成签到,获得积分10
10秒前
张培元发布了新的文献求助10
10秒前
JL发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
RF and Microwave Power Amplifiers 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5022919
求助须知:如何正确求助?哪些是违规求助? 4260625
关于积分的说明 13278591
捐赠科研通 4067098
什么是DOI,文献DOI怎么找? 2224440
邀请新用户注册赠送积分活动 1233331
关于科研通互助平台的介绍 1157307