How Much Can Machines Learn Finance from Chinese Text Data?

计算机科学 公司财务 财务 数据科学 经济
作者
Yang Zhou,Jianqing Fan,Lirong Xue
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:70 (12): 8962-8987 被引量:6
标识
DOI:10.1287/mnsc.2022.01468
摘要

How much can we learn finance directly from text data? This paper presents a new framework for learning textual data based on the factor augmentation model and sparsity regularization, called the factor-augmented regularized model for prediction (FarmPredict), to let machines learn financial returns directly from news. FarmPredict allows the model itself to extract information directly from articles without predefined information, such as dictionaries or pretrained models as in most studies. Using unsupervised learned factors to augment the predictors would benefit our method with a “double-robust” feature: that the machine would learn to balance between individual words or text factors/topics. It also avoids the information loss of factor regression in dimensionality reduction. We apply our model to the Chinese stock market with a large proportion of retail investors by using Chinese news data to predict financial returns. We show that positive sentiments scored by our FarmPredict approach from news generate on average 83 basic points (bps) stock daily excess returns, and negative news has an adverse impact of 26 bps on the days of news announcements, where both effects can last for a few days. This asymmetric effect aligns well with the short-sale constraints in the Chinese equity market. The result shows that the machine-learned prediction does provide sizeable predictive power with an annualized return of 54% at most with a simple investment strategy. Compared with other statistical and machine learning methods, FarmPredict significantly outperforms them on model prediction and portfolio performance. Our study demonstrates the far-reaching potential of using machines to learn text data. This paper was accepted by Kay Giesecke, finance. Funding: This study was supported by the National Natural Science Foundation of China [Grants 71991471, 71991470, and 72204049], the National Key Research and Development Program [Grant 2020YFA0608604], the Shanghai Pujiang Scholar Project [Grant 21PJC010], the Shanghai Science Project [Grant 23692119300], and the China Postdoctoral Science Project [Grants 2019M650076 and 2020T130107]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.01468 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助zfgdr采纳,获得10
刚刚
刚刚
大个应助大卫戴采纳,获得20
刚刚
阚元梦完成签到,获得积分10
1秒前
tang发布了新的文献求助10
2秒前
2秒前
Cjiayi发布了新的文献求助10
5秒前
6秒前
CipherSage应助Mao采纳,获得10
7秒前
隐形曼青应助iwsaml采纳,获得10
7秒前
科研通AI6应助鹤轸采纳,获得10
7秒前
April发布了新的文献求助10
8秒前
8秒前
JamesPei应助1号采纳,获得30
8秒前
8R60d8应助1号采纳,获得10
8秒前
Ankher应助1号采纳,获得30
8秒前
星辰大海应助1号采纳,获得200
9秒前
9秒前
eric888应助1号采纳,获得100
9秒前
8R60d8应助1号采纳,获得10
9秒前
花楹应助1号采纳,获得10
9秒前
脑洞疼应助1号采纳,获得10
9秒前
共享精神应助1号采纳,获得10
9秒前
顾矜应助1号采纳,获得10
9秒前
9秒前
大个应助zzzyq采纳,获得10
11秒前
小确幸完成签到 ,获得积分10
11秒前
大卫戴发布了新的文献求助10
12秒前
bkagyin应助喻雷采纳,获得10
13秒前
13秒前
寻北意完成签到,获得积分10
14秒前
14秒前
地SDF完成签到,获得积分10
14秒前
15秒前
李爱国应助努力搞科研采纳,获得10
15秒前
BINGBING1230发布了新的文献求助30
16秒前
小二郎应助100采纳,获得10
16秒前
16秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Revision of the Australian Thynnidae and Tiphiidae (Hymenoptera) 500
Instant Bonding Epoxy Technology 500
Pipeline Integrity Management Under Geohazard Conditions (PIMG) 500
Methodology for the Human Sciences 500
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4355865
求助须知:如何正确求助?哪些是违规求助? 3859124
关于积分的说明 12040447
捐赠科研通 3500682
什么是DOI,文献DOI怎么找? 1921217
邀请新用户注册赠送积分活动 963531
科研通“疑难数据库(出版商)”最低求助积分说明 863216