How Much Can Machines Learn Finance from Chinese Text Data?

计算机科学 公司财务 财务 数据科学 经济
作者
Yang Zhou,Jianqing Fan,Lirong Xue
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:70 (12): 8962-8987 被引量:6
标识
DOI:10.1287/mnsc.2022.01468
摘要

How much can we learn finance directly from text data? This paper presents a new framework for learning textual data based on the factor augmentation model and sparsity regularization, called the factor-augmented regularized model for prediction (FarmPredict), to let machines learn financial returns directly from news. FarmPredict allows the model itself to extract information directly from articles without predefined information, such as dictionaries or pretrained models as in most studies. Using unsupervised learned factors to augment the predictors would benefit our method with a “double-robust” feature: that the machine would learn to balance between individual words or text factors/topics. It also avoids the information loss of factor regression in dimensionality reduction. We apply our model to the Chinese stock market with a large proportion of retail investors by using Chinese news data to predict financial returns. We show that positive sentiments scored by our FarmPredict approach from news generate on average 83 basic points (bps) stock daily excess returns, and negative news has an adverse impact of 26 bps on the days of news announcements, where both effects can last for a few days. This asymmetric effect aligns well with the short-sale constraints in the Chinese equity market. The result shows that the machine-learned prediction does provide sizeable predictive power with an annualized return of 54% at most with a simple investment strategy. Compared with other statistical and machine learning methods, FarmPredict significantly outperforms them on model prediction and portfolio performance. Our study demonstrates the far-reaching potential of using machines to learn text data. This paper was accepted by Kay Giesecke, finance. Funding: This study was supported by the National Natural Science Foundation of China [Grants 71991471, 71991470, and 72204049], the National Key Research and Development Program [Grant 2020YFA0608604], the Shanghai Pujiang Scholar Project [Grant 21PJC010], the Shanghai Science Project [Grant 23692119300], and the China Postdoctoral Science Project [Grants 2019M650076 and 2020T130107]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.01468 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
5秒前
5秒前
玩命的觅珍完成签到,获得积分20
6秒前
7秒前
7秒前
请叫我过儿完成签到,获得积分10
9秒前
9秒前
清脆大米发布了新的文献求助10
9秒前
10秒前
粥粥粥发布了新的文献求助10
10秒前
10秒前
kyhzxy完成签到,获得积分10
11秒前
花深粥完成签到 ,获得积分10
12秒前
我是老大应助yaxuandeng采纳,获得10
12秒前
季生发布了新的文献求助30
15秒前
水何澹澹完成签到,获得积分0
15秒前
15秒前
wesley完成签到 ,获得积分0
15秒前
16秒前
章鱼发布了新的文献求助10
16秒前
lyp发布了新的文献求助30
16秒前
17秒前
jianjiao完成签到,获得积分10
17秒前
17秒前
机灵语雪完成签到,获得积分10
17秒前
17秒前
18秒前
彭于晏应助leo采纳,获得10
18秒前
科研通AI2S应助wu采纳,获得10
18秒前
水123发布了新的文献求助10
19秒前
20秒前
Taozhi完成签到,获得积分10
20秒前
20秒前
飘逸薯片发布了新的文献求助10
21秒前
Owen应助椰汁采纳,获得10
21秒前
vensin发布了新的文献求助10
21秒前
21秒前
悬夜发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601396
求助须知:如何正确求助?哪些是违规求助? 4686922
关于积分的说明 14846724
捐赠科研通 4680979
什么是DOI,文献DOI怎么找? 2539359
邀请新用户注册赠送积分活动 1506257
关于科研通互助平台的介绍 1471293