Vehicle lane-change intention recognition based on BiLSTM Attention model for the Internet of vehicles

计算机科学 互联网 运输工程 人工智能 工程类 万维网
作者
Yufeng Chen,Haonian Cao,Zhengtao Xiang,Bo Chen,Yingkui Ma,Yu Zhang
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE]
卷期号:239 (7): 2551-2564 被引量:1
标识
DOI:10.1177/09544070241240225
摘要

In terms of lane-changing and other driver actions, precise identification of the intentions of nearby vehicles is crucial to autonomous vehicle performance safety. At present, research in this domain primarily focuses on ideal environments without considering data packet loss. Therefore, this paper considered the impact of packet loss in the Internet of Vehicles on the performance of the lane change intent recognition model. To achieve this, an enhanced BiLSTM Attention model, which combines the bidirectional long short-term memory network structure and attention mechanism, is proposed based on LSTM. The NGSIM (Next Generation Simulation) dataset was utilized to extract vehicle lane-change behaviors for model training and testing. A long short-term memory (LSTM) model was employed to conduct comparative experiments using various input frequencies and packet loss rates. The performance of the proposed BiLSTM Attention model was evaluated through ablation experiments. A comparison was made between the model’s performance in the absence of packet loss and its performance under a scenario with 30% packet loss. Additionally, the impact of continuous packet loss on the recognition of the lane-change intent model was analyzed. Experiments show that it outperforms basic LSTM and BiLSTM models, including the LSTM Attention method, with impressive improvements of 7.84%, 2.22%, and 4.89% (F1 macro ) and 2.83%, 1.03%, and 2.18% for the area under the receiver operating characteristic curve (AUC), respectively. Even under extreme (30%) packet loss conditions, the proposed model outperforms the same models by 8.23%, 2.68%, and 5.38% (F1 macro ) and 2.94%, 1.03%, and 2.29% (AUC), respectively. For 30% packet loss, the proposed model’s performance decreased by 0.108% (F1 macro ) and 0.102% (AUC); however, the LSTM, BiLSTM, and LSTM Attention model performances decreased by 0.468% and 0.209%, 0.554% and 0.103%, and 0.569% and 0.208% for F1 macro and AUC, respectively. Thus, the proposed model is the least affected by packet loss.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵的团发布了新的文献求助10
刚刚
默默书竹完成签到,获得积分10
1秒前
luxiaoyu发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
ziziforever完成签到,获得积分10
3秒前
JingjingWang发布了新的文献求助10
3秒前
3秒前
4秒前
广陵散了完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
NexusExplorer应助TT采纳,获得10
5秒前
CipherSage应助TT采纳,获得10
5秒前
加油努力完成签到 ,获得积分20
5秒前
5秒前
活力数据线完成签到,获得积分10
6秒前
ajiao完成签到,获得积分10
7秒前
广陵散了发布了新的文献求助10
7秒前
8秒前
甜美鱼发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
11秒前
12秒前
Akim应助Leonard采纳,获得10
12秒前
Yogita发布了新的文献求助10
13秒前
小马甲应助钟沐晨采纳,获得10
14秒前
林志坚完成签到 ,获得积分10
14秒前
14秒前
minimints完成签到,获得积分10
15秒前
思源应助luxiaoyu采纳,获得10
15秒前
辣辣发布了新的文献求助10
15秒前
左手树发布了新的文献求助10
15秒前
no发布了新的文献求助10
15秒前
16秒前
WL完成签到,获得积分10
16秒前
洁净的汽车完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655431
求助须知:如何正确求助?哪些是违规求助? 4798844
关于积分的说明 15072796
捐赠科研通 4813848
什么是DOI,文献DOI怎么找? 2575363
邀请新用户注册赠送积分活动 1530745
关于科研通互助平台的介绍 1489386