Vehicle lane-change intention recognition based on BiLSTM Attention model for the Internet of vehicles

计算机科学 互联网 运输工程 人工智能 工程类 万维网
作者
Yufeng Chen,Hanwen Cao,Zhengtao Xiang,Bo Chen,Yingkui Ma,Yu Zhang
标识
DOI:10.1177/09544070241240225
摘要

In terms of lane-changing and other driver actions, precise identification of the intentions of nearby vehicles is crucial to autonomous vehicle performance safety. At present, research in this domain primarily focuses on ideal environments without considering data packet loss. Therefore, this paper considered the impact of packet loss in the Internet of Vehicles on the performance of the lane change intent recognition model. To achieve this, an enhanced BiLSTM Attention model, which combines the bidirectional long short-term memory network structure and attention mechanism, is proposed based on LSTM. The NGSIM (Next Generation Simulation) dataset was utilized to extract vehicle lane-change behaviors for model training and testing. A long short-term memory (LSTM) model was employed to conduct comparative experiments using various input frequencies and packet loss rates. The performance of the proposed BiLSTM Attention model was evaluated through ablation experiments. A comparison was made between the model’s performance in the absence of packet loss and its performance under a scenario with 30% packet loss. Additionally, the impact of continuous packet loss on the recognition of the lane-change intent model was analyzed. Experiments show that it outperforms basic LSTM and BiLSTM models, including the LSTM Attention method, with impressive improvements of 7.84%, 2.22%, and 4.89% (F1 macro ) and 2.83%, 1.03%, and 2.18% for the area under the receiver operating characteristic curve (AUC), respectively. Even under extreme (30%) packet loss conditions, the proposed model outperforms the same models by 8.23%, 2.68%, and 5.38% (F1 macro ) and 2.94%, 1.03%, and 2.29% (AUC), respectively. For 30% packet loss, the proposed model’s performance decreased by 0.108% (F1 macro ) and 0.102% (AUC); however, the LSTM, BiLSTM, and LSTM Attention model performances decreased by 0.468% and 0.209%, 0.554% and 0.103%, and 0.569% and 0.208% for F1 macro and AUC, respectively. Thus, the proposed model is the least affected by packet loss.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏苏苏完成签到 ,获得积分10
刚刚
英姑应助炙热笑旋采纳,获得10
刚刚
刚刚
Owen应助vegetable采纳,获得10
刚刚
1秒前
子虚一尘完成签到,获得积分10
1秒前
1秒前
2秒前
Baneyhua完成签到,获得积分10
2秒前
CipherSage应助柒七采纳,获得10
3秒前
3秒前
hywang发布了新的文献求助10
3秒前
英俊的铭应助guri采纳,获得10
3秒前
烟花应助jam采纳,获得10
4秒前
4秒前
4秒前
有魅力的臻完成签到,获得积分10
4秒前
婷婷婷不停完成签到,获得积分10
5秒前
充电宝应助栩栩采纳,获得10
6秒前
6秒前
chen完成签到,获得积分10
6秒前
VAE完成签到,获得积分10
6秒前
7秒前
ferritin完成签到 ,获得积分10
7秒前
willlee发布了新的文献求助20
7秒前
雯子发布了新的文献求助10
7秒前
小小李发布了新的文献求助10
8秒前
8秒前
木子李发布了新的文献求助10
8秒前
大气指甲油完成签到,获得积分10
8秒前
9秒前
Azhou应助滴滴哩哩采纳,获得20
9秒前
9秒前
所所应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
mz完成签到 ,获得积分10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796285
求助须知:如何正确求助?哪些是违规求助? 3341253
关于积分的说明 10305258
捐赠科研通 3057801
什么是DOI,文献DOI怎么找? 1677917
邀请新用户注册赠送积分活动 805718
科研通“疑难数据库(出版商)”最低求助积分说明 762740