股骨
兔子(密码)
固定(群体遗传学)
外科
医学
生物医学工程
计算机科学
计算机安全
环境卫生
人口
作者
Kenda Sabouni,Yetkin Öztürk,Erkan Kaçar,Gamze Torun Köse,Fatma Neşe Kök,Kürşat Kazmanlı,Mustafa Ürgen,Sakip Önder
摘要
BACKGROUND: Magnesium (Mg) enhances the bone regeneration, mineralization and attachment at the tissue/biomaterial interface. OBJECTIVE: In this study, the effect of Mg on mineralization/osseointegration was determined using (Ti,Mg)N thin film coated Ti6Al4V based plates and screws in vivo. METHODS: TiN and (Ti,Mg)N coated Ti6Al4V plates and screws were prepared using arc-PVD technique and used to fix rabbit femur fractures for 6 weeks. Then, mineralization/osseointegration was assessed by surface analysis including cell attachment, mineralization, and hydroxyapatite deposition on concave and convex sides of the plates along with the attachment between the screw and the bone. RESULTS: According to Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) analyses; cell attachment and mineralization were higher on the concave sides of the plates from both groups in comparison to the convex sides. However, mineralization was significantly higher on Mg-containing ones. The mean gray value indicating mineralized area after von Kossa staining was found as 0.48 ± 0.01 and 0.41 ± 0.04 on Mg containing and free ones respectively. Similarly, Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD) analyses showed that hydroxyapatite growth was abundant on the Mg-containing and concave sides of the plates. Enhanced mineralization and strong attachment to bone were also detected in EDS and SEM analyses of Mg-containing screws. CONCLUSION: These findings indicated that (Ti,Mg)N coatings can be used to increase attachment at the implant tissue interface due to accelerated mineralization, cell attachment, and hydroxyapatite growth.
科研通智能强力驱动
Strongly Powered by AbleSci AI