Quantum Dot Light‐Emitting Synaptic Transistor for Parallel Data Transmission of Diverse Artificial Neural Network

神经形态工程学 材料科学 计算机科学 晶体管 人工神经网络 量子点 互连 光电子学 电子工程 电气工程 人工智能 电压 电信 工程类
作者
Lujian Liu,Qizhen Chen,Huaan Zeng,Liuting Shan,Chuanbin An,Bingyong Zhuang,Huipeng Chen,Tailiang Guo,Wenping Hu
出处
期刊:Advanced materials and technologies [Wiley]
卷期号:8 (16) 被引量:5
标识
DOI:10.1002/admt.202300225
摘要

Abstract Artificial synaptic devices serve as the cornerstone of artificial neural networks, much research is devoted to the development of artificial synaptic devices with multiple functions for the future construction of large‐scale artificial neural networks. By adding optical signal output to traditional synaptic devices, the strategy of transforming the devices from a single electrical interconnection to an optoelectronic interconnection is considered to be an effective way to solve the problem of wire cross‐talk in large‐scale artificial neural networks. Herein, a quantum‐dot light‐emitting synaptic transistor capable of dual output of optoelectronic signals by integrating the functions of light‐emitting transistor and synaptic transistor into a single device is demonstrated for the first time. Based on the novel working mechanism and the excellent optoelectronic properties of quantum dots, the device can exhibit dual responses of electrical and optical signals under electrical pulse stimulation. More importantly, some key synaptic functions such as excitatory postsynaptic current, paired pulse facilitation, high‐pass filtering properties, and the transition from short‐term memory to long‐term memory are successfully simulated in the device. In addition, classical conditioned reflex experiments as well as the processes of learning and forgetting are optically and electrically simulated. This work provides a feasible way to realize multivariate artificial neural networks with high integration and optoelectronic interconnection to transmit information, showing great potential in the development of neuromorphic computing in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助zhou采纳,获得10
刚刚
刚刚
鄂浩轩完成签到,获得积分20
1秒前
田様应助李白采纳,获得10
1秒前
CJY发布了新的文献求助10
1秒前
30完成签到,获得积分10
1秒前
丘比特应助klbzw03采纳,获得10
3秒前
3秒前
0126发布了新的文献求助10
3秒前
雨前知了完成签到,获得积分10
4秒前
xxx发布了新的文献求助10
4秒前
赘婿应助宇帅采纳,获得10
4秒前
zhangpeipei完成签到,获得积分10
4秒前
4秒前
十八发布了新的文献求助10
4秒前
4秒前
5秒前
杜客完成签到,获得积分10
5秒前
112uij关注了科研通微信公众号
5秒前
大模型应助jiaojiao采纳,获得10
5秒前
aigj完成签到,获得积分10
5秒前
6秒前
6秒前
CipherSage应助拜拜拜采纳,获得10
6秒前
量子星尘发布了新的文献求助50
7秒前
专注完成签到 ,获得积分10
7秒前
A2QD发布了新的文献求助10
8秒前
竹筏过海完成签到,获得积分0
9秒前
ddc_0819发布了新的文献求助10
9秒前
perdgs发布了新的文献求助10
10秒前
sly发布了新的文献求助10
10秒前
Truman发布了新的文献求助10
10秒前
orixero应助健壮的以莲采纳,获得10
10秒前
ChinaNiu完成签到,获得积分10
10秒前
我是老大应助哈密瓜采纳,获得10
10秒前
张泽轩发布了新的文献求助10
11秒前
咔咔完成签到,获得积分10
12秒前
12秒前
石头完成签到,获得积分10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074953
求助须知:如何正确求助?哪些是违规求助? 4294878
关于积分的说明 13382686
捐赠科研通 4116573
什么是DOI,文献DOI怎么找? 2254349
邀请新用户注册赠送积分活动 1258893
关于科研通互助平台的介绍 1191820