Water flow induced piezoelectric polarization and sulfur vacancy boosting photocatalytic hydrogen peroxide evolution of cadmium sulfide nanorods

硫化镉 纳米棒 光催化 材料科学 空位缺陷 极化(电化学) 压电 化学工程 光电子学 化学 光化学 纳米技术 催化作用 复合材料 冶金 结晶学 物理化学 有机化学 工程类
作者
Yingge Zhang,Lingchao Wang,Hongwei Huang,Cheng Hu,Xiaolei Zhang,Chunyang Wang,Yihe Zhang
出处
期刊:Applied Catalysis B-environmental [Elsevier BV]
卷期号:331: 122714-122714 被引量:51
标识
DOI:10.1016/j.apcatb.2023.122714
摘要

Piezo-photocatalytic H2O2 production utilizing earth-abundant solar and mechanical energies, oxygen and water is a highly appealing route to produce renewable energy carriers. However, piezoelectric polarization always suffers from high-frequency mechanical vibration, which severely restricts its actual applications. Here, we report prominent piezo-photocatalytic H2O2 evolution from pure water triggered by low-frequency water flow induced mechanical stress over 1D CdS nanorods with sulfur vacancy (CdS NRs). The polar CdS NRs possess benign piezoelectric property and favorable morphology, enabling high sensitivity and respond to weak force of water flow, which contribute to yielding large piezoelectric polarization for photogenerated charges separation. Piezoelectric polarization also shows an inhibition effect on the photocorrosion of CdS to ·SO3-. Besides, DFT calculations demonstrate that sulfur vacancy allows enhanced O2 adsorption and formation of the intermediate *OOH on the surface of CdS. Under simultaneous visible light and high-speed stirring, CdS NRs display a remarkably synergetic piezo-photocatalytic H2O2 production (1631.4 µmol g−1 h−1) without any sacrificial agents, 2.4 and 73.8 times of that under sole visible light and mechanical agitation, respectively. Importantly, it achieves an apparent quantum efficiency (AQY) of 1.32% at wavelength up to 500 nm and a solar-to-chemical (STC) conversion efficiency of 0.05% under one-sun illumination, which far exceeds other reported sulfide-based catalysts. This work integrates well with polarization engineering, defect engineering and morphology engineering to enhance catalytic behavior, providing a feasible strategy for designing efficient piezo-photocatalysts sensitive to weak mechanical forces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助尊敬的幻桃采纳,获得10
2秒前
Hello应助郭宇采纳,获得10
4秒前
沐风应助Zpiao采纳,获得10
4秒前
共享精神应助玖月采纳,获得10
5秒前
1111111111111发布了新的文献求助10
8秒前
9秒前
hhhhh完成签到,获得积分10
9秒前
10秒前
12秒前
12秒前
13秒前
所所应助乙二胺四乙酸采纳,获得10
14秒前
席冥完成签到,获得积分10
15秒前
16秒前
动漫大师发布了新的文献求助30
16秒前
玖月发布了新的文献求助10
18秒前
领导范儿应助小全采纳,获得10
18秒前
小樊同学发布了新的文献求助10
19秒前
ttu完成签到,获得积分10
20秒前
22秒前
123完成签到,获得积分10
24秒前
Feng5945完成签到 ,获得积分10
24秒前
27秒前
27秒前
29秒前
29秒前
好的番茄loconte完成签到,获得积分10
31秒前
小全发布了新的文献求助10
34秒前
震动的平松完成签到 ,获得积分10
37秒前
充电宝应助小樊同学采纳,获得10
39秒前
科研通AI5应助ling采纳,获得10
39秒前
田様应助pazuzu采纳,获得10
40秒前
SSY完成签到,获得积分10
40秒前
cdercder应助XIAOBAI采纳,获得10
40秒前
41秒前
zhutier完成签到,获得积分10
41秒前
zone发布了新的文献求助10
42秒前
NXK发布了新的文献求助10
44秒前
标致小翠完成签到,获得积分10
44秒前
木木三发布了新的文献求助10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776802
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209363
捐赠科研通 3037491
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976