Nanocellulose‐Carboxymethylcellulose Electrolyte for Stable, High‐Rate Zinc‐Ion Batteries

材料科学 电解质 化学工程 纳米纤维素 阳极 储能 电化学 电池(电) 水溶液 钝化 电导率 纳米技术 电极 纤维素 有机化学 功率(物理) 化学 物理 物理化学 量子力学 图层(电子) 工程类
作者
Lin Xu,Taotao Meng,Xueying Zheng,Tangyuan Li,Alexandra H. Brozena,Yimin Mao,Qian Zhang,Bryson Callie Clifford,Jiancun Rao,Liangbing Hu
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:33 (27) 被引量:160
标识
DOI:10.1002/adfm.202302098
摘要

Abstract Aqueous Zn ion batteries (ZIBs) are one of the most promising battery chemistries for grid‐scale renewable energy storage. However, their application is limited by issues such as Zn dendrite formation and undesirable side reactions that can occur in the presence of excess free water molecules and ions. In this study, a nanocellulose‐carboxymethylcellulose (CMC) hydrogel electrolyte is demonstrated that features stable cycling performance and high Zn 2+ conductivity (26 mS cm −1 ), which is attributed to the material's strong mechanical strength (≈70 MPa) and water‐bonding ability. With this electrolyte, the Zn‐metal anode shows exceptional cycling stability at an ultra‐high rate, with the ability to sustain a current density as high as 80 mA cm −2 for more than 3500 cycles and a cumulative capacity of 17.6 Ah cm −2 (40 mA cm −2 ). Additionally, side reactions, such as hydrogen evolution and surface passivation, are substantially reduced due to the strong water‐bonding capacity of the CMC. Full Zn||MnO 2 batteries fabricated with this electrolyte demonstrate excellent high‐rate performance and long‐term cycling stability (>500 cycles at 8C). These results suggest the cellulose‐CMC electrolyte as a promising low‐cost, easy‐to‐fabricate, and sustainable aqueous‐based electrolyte for ZIBs with excellent electrochemical performance that can help pave the way toward grid‐scale energy storage for renewable energy sources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qiuyue发布了新的文献求助10
1秒前
科研小lese发布了新的文献求助10
1秒前
今后应助北夏暖采纳,获得10
1秒前
凌奕添发布了新的文献求助10
1秒前
yyy发布了新的文献求助10
2秒前
2秒前
2秒前
zzzlx完成签到,获得积分10
2秒前
碧蓝世立发布了新的文献求助10
3秒前
3秒前
3秒前
洁净的静芙完成签到,获得积分10
3秒前
3秒前
李健的粉丝团团长应助1234采纳,获得10
4秒前
兔兔发布了新的文献求助10
4秒前
CipherSage应助斜对角的苍白采纳,获得10
4秒前
柠檬气泡饮完成签到,获得积分10
5秒前
vv发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
Hello应助Bonnie采纳,获得10
6秒前
7秒前
Chen发布了新的文献求助10
8秒前
weimin发布了新的文献求助20
8秒前
斯文败类应助呆呆要努力采纳,获得10
8秒前
9秒前
BLCER完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
lu发布了新的文献求助10
10秒前
CodeCraft应助碧蓝世立采纳,获得10
10秒前
11秒前
11秒前
11秒前
11秒前
吕jdjshs完成签到,获得积分10
11秒前
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5154407
求助须知:如何正确求助?哪些是违规求助? 4350079
关于积分的说明 13544335
捐赠科研通 4192952
什么是DOI,文献DOI怎么找? 2299638
邀请新用户注册赠送积分活动 1299586
关于科研通互助平台的介绍 1244704