神经形态工程学
材料科学
微秒
突触可塑性
长时程增强
氧化物
峰值时间相关塑性
记忆电阻器
纳米材料
纳米技术
突触
可塑性
计算机科学
能量(信号处理)
电阻随机存取存储器
神经科学
离子键合
人工神经网络
电压
神经可塑性
能源消耗
光电子学
突触发生
突触重量
纳米结构
人工智能
作者
Ying Li,Xiaofan Zhou,Jingwen Guo,Tong Chen,Xia Xiao,Guangyu Wang,M. A. Alam,Qi Zhang,Liqian Wu
标识
DOI:10.35848/1347-4065/adf8a7
摘要
Abstract Metal oxide nanomaterials are promising candidates for neuromorphic systems due to their remarkable physical properties, including atomic-scale thickness and high ionic activity. In this work, Co 3 O 4 nanoflowers were incorporated into artificial synaptic devices, exhibiting both short-term plasticity (e.g. paired-pulse facilitation) and long-term plasticity (e.g. spike-timing-dependent plasticity) with picojoule energy consumption and microsecond time constants. Utilizing the long-term potentiation and depression characteristics of the Co 3 O 4 nanoflower-based artificial synapses, the visual learning capability was demonstrated. X-ray photoelectron spectroscopy depth profiling analysis revealed that the synaptic behavior is primarily governed by the migration of oxygen vacancies. These findings underscore the potential of metal oxide nanoflower-based artificial synapses for use in energy-efficient neuromorphic circuits and complex cognitive systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI