材料科学
电池(电)
铝
电流(流体)
集电器
离子
对偶(语法数字)
溶剂
复合材料
纳米技术
冶金
化学工程
有机化学
电气工程
功率(物理)
化学
艺术
工程类
文学类
物理
量子力学
作者
Seok Yun Kim,Tae‐Kyung Liu,Hyun Jae Kim,Dong Hwan Wang,Jong Hyeok Park
标识
DOI:10.1002/adfm.202518597
摘要
Abstract Conventional dry‐processed electrode (DPE) fabrication using polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF) offers a solvent‐free alternative to wet‐coating processes that rely on toxic N ‐methyl‐2‐pyrrolidone. However, traditional DPE systems often struggle with a trade‐off between internal cohesion and interfacial adhesion, limiting electrode integrity and electrochemical performance under high‐loading conditions. Herein, an advanced dual‐binder DPE (DB‐DPE) architecture that integrates PTFE and PVDF with a nanostructured aluminum current collector (NSA) is presented. This synergistic system leverages PTFE's fibrillation‐induced cohesion and PVDF's adhesive strength, while the NSA's nanoporous morphology enables robust mechanical interlocking at the electrode–collector interface. The resulting electrodes, fabricated with an ultrahigh active material content of 96 wt.% and minimal binder content of 2 wt.%, exhibit reduced interfacial resistance, excellent mechanical integrity, and enhanced ionic and electronic conductivity. This architecture enables the fabrication of high‐mass‐loading cathodes (up to 64 mg cm −2 , 12.5 mAh cm −2 ) with superior performance, achieving a high volumetric energy density of 712.7 Wh L −1 .
科研通智能强力驱动
Strongly Powered by AbleSci AI