Heterogeneous Driving Effects Guide Personalized Tumor Treatments Targeting N6-Methyladenosine

PI3K/AKT/mTOR通路 个性化医疗 医学 人口 优先次序 蛋白激酶B 临床终点 癌症研究 肿瘤科 临床试验 生物信息学 生物 内科学 信号转导 遗传学 环境卫生 管理科学 经济
作者
Xudong Mao,Zhehao Xu,Xiaoping Yang,Shihan Chen,Liyang Li,Zeyi Lu,Haohua Lu,Yudong Lin,Ruyue Wang,Yang Li,Fan Li,Lifeng Ding,Wu Luo,Xianjiong Chen,Yi Lu,Ziwei Zhu,Xinyu Zhao,Zhifan Ding,Liqun Xia,Qi Liu
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:85 (20): 4018-4035
标识
DOI:10.1158/0008-5472.can-24-4250
摘要

Abstract Alterations to N6-methyladenosine (m6A) modifications can promote malignant progression by modulating gene expression through regulation of transcript metabolism. Quantifying the causal impact of m6A dysregulation at the population level could help guide personalized therapeutic interventions. In this study, we developed a causal framework that enables precise estimation of the driving effects (DE) of m6A dysregulation on tumor survival, establishing DE-based enhanced prioritization rules for anti-m6A therapies. The global average DE of m6A dysregulation across 9,647 tumors resulted in a decrease in overall survival of 180.1 days, considering a 5-year survival endpoint, suggesting potential overall benefits of treatment. Profiling of tumors most susceptible to m6A dysregulation and application of a modifier-mining tool revealed an effect modification in the PI3K/AKT/mTOR pathway. Specifically, the benefits of m6A-targeted treatment varied depending on baseline mTOR levels, which were validated in vitro and in vivo. Overall, focusing on m6A, this study established a paradigm leveraging DE over conventional risk to optimize personalized therapy. Significance: A causal inference framework based on m6A modifications that quantifies driving effects and characterizes high-benefit tumor profiles offers an improved approach for guiding personalized tumor treatment decisions. This article is part of a special series: Driving Cancer Discoveries with Computational Research, Data Science, and Machine Learning/AI .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
Guofa.完成签到 ,获得积分10
1秒前
1秒前
无心的钢铁侠完成签到,获得积分10
1秒前
上官若男应助linyh采纳,获得10
2秒前
2秒前
alilu发布了新的文献求助10
3秒前
Ava应助shinn采纳,获得10
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
7秒前
gzslwddhjx发布了新的文献求助10
7秒前
7秒前
桐桐应助顶针采纳,获得10
8秒前
8秒前
genge发布了新的文献求助10
9秒前
1821977451发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
12秒前
13秒前
Guo发布了新的文献求助10
13秒前
阿梦发布了新的文献求助10
14秒前
14秒前
14秒前
manji完成签到,获得积分10
15秒前
Zhang发布了新的文献求助10
15秒前
伙伴发布了新的文献求助10
16秒前
16秒前
CodeCraft应助纯真的德地采纳,获得10
17秒前
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
传奇3应助熊国开采纳,获得10
19秒前
夜冷瞳发布了新的文献求助10
19秒前
mmnn完成签到 ,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300