Characterizing the importance of nodes with information feedback in multilayer networks

中心性 页面排名 计算机科学 参数化复杂度 网络科学 数据挖掘 秩(图论) 复杂网络 理论计算机科学 分布式计算 算法 数学 组合数学 万维网
作者
Meng Li,Yuanxiang Jiang,Zengru Di
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (3): 103344-103344 被引量:12
标识
DOI:10.1016/j.ipm.2023.103344
摘要

Characterizing the importance of agents or events with possible related information is an important topic in information science. Due to the related agents and events usually can be described by the interconnected multilayer networks, so it is also one of the core themes in network-science. Previous researchers have proposed various tensor-based methods to discuss the centrality of interconnected multilayer networks, but the research on heterogeneous multilayer networks is insufficient. In this paper, based on PageRank algorithm in single-layer network, information feedback is introduced to describe the interaction among different layers. Then the coupled information feedback algorithm is developed to measure the centrality of the nodes in multilayer networks. First, the importance of nodes is measured according to PageRank in single network. Second, the links between the different layers are considered as the transmission and feedback paths for the information about the centrality of the nodes with interlayer links. This feedback mechanism could show us the global importance introduced by the interdependence of different layers. The feedback strength is parameterized and can be adjusted. With the feedback of information among different layers, an iterative update method for evaluating the importance of nodes in multilayer networks is constructed. Finally, several interesting cases are presented to illustrate how the feedback strength affects the rank of the nodes in the networks. The effectiveness of the proposed method is verified by an experimental analysis of the Author-Paper multilayer networks from the APS database and two other actual multilayer networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BJzeng完成签到,获得积分10
刚刚
王斌完成签到,获得积分10
刚刚
活泼的磬发布了新的文献求助10
刚刚
zytzhong发布了新的文献求助10
1秒前
希望天下0贩的0应助111采纳,获得10
2秒前
花颜完成签到,获得积分20
2秒前
andrele应助axsx采纳,获得10
2秒前
林kh完成签到 ,获得积分10
2秒前
2秒前
4秒前
火火完成签到,获得积分10
4秒前
4秒前
5秒前
星辰大海应助哈哈哈采纳,获得10
5秒前
天很蓝完成签到,获得积分10
6秒前
6秒前
rainc完成签到,获得积分10
7秒前
花颜发布了新的文献求助10
7秒前
7秒前
情怀应助喜悦小笼包采纳,获得10
7秒前
下文献完成签到,获得积分10
8秒前
嘿嘿完成签到 ,获得积分10
8秒前
黄橙子完成签到 ,获得积分10
8秒前
自觉曼岚发布了新的文献求助10
9秒前
豆豆发布了新的文献求助30
9秒前
9秒前
9秒前
跑快点发布了新的文献求助10
10秒前
1F完成签到,获得积分10
10秒前
besos发布了新的文献求助10
10秒前
送你一匹马完成签到,获得积分10
11秒前
陈某人完成签到,获得积分10
11秒前
Criminology34应助静乖乖采纳,获得10
11秒前
11秒前
12秒前
12秒前
好想吃李子完成签到,获得积分10
12秒前
12秒前
赘婿应助dddddw采纳,获得10
12秒前
111发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601255
求助须知:如何正确求助?哪些是违规求助? 4686741
关于积分的说明 14845862
捐赠科研通 4680218
什么是DOI,文献DOI怎么找? 2539276
邀请新用户注册赠送积分活动 1506140
关于科研通互助平台的介绍 1471283