清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Modelling the compressive strength of geopolymer recycled aggregate concrete using ensemble machine learning

聚合物 抗压强度 骨料(复合) 地聚合物水泥 材料科学 复合材料
作者
Emadaldin Mohammadi Golafshani,Nima Khodadadi,Tuan Ngo,Antonio Nanni,Ali Behnood
出处
期刊:Advances in Engineering Software [Elsevier BV]
卷期号:191: 103611-103611 被引量:25
标识
DOI:10.1016/j.advengsoft.2024.103611
摘要

In the quest to reduce the environmental impact of the construction sector, the adoption of sustainable and eco-friendly materials is imperative. Geopolymer recycled aggregate concrete (GRAC) emerges as a promising solution by substituting supplementary cementitious materials, including fly ash and slag cement, for ordinary Portland cement and utilizing recycled aggregates from construction and demolition waste, thus significantly lowering carbon emissions and resource consumption. Despite its potential, the widespread implementation of GRAC has been hindered by the lack of an effective mix design methodology. This study seeks to bridge this gap through a novel machine learning (ML)-based approach to accurately model the compressive strength (CS) of GRAC, a critical parameter for ensuring structural integrity and safety. By compiling a comprehensive database from existing literature and enhancing it with synthetic data generated through a tabular generative adversarial network, this research employs eight ensemble ML techniques, comprising three bagging and five boosting methods, to predict the CS of GRAC with high precision. The boosting models, notably extreme gradient boosting, light gradient boosting, gradient boosting, and categorical gradient boosting regressors, demonstrated superior performance, achieving a mean absolute percentage error of less than 6 %. This precision in prediction underscores the viability of ML in optimizing GRAC formulations for enhanced structural applications. The identification of testing age, natural fine aggregate content, and recycled aggregate ratio as pivotal factors offers valuable insights into the mix design process, facilitating more informed decisions in material selection and proportioning. Moreover, the development of a user-friendly graphical interface for CS prediction exemplifies the practical application of this research, potentially accelerating the adoption of GRAC in mainstream construction practices. By enabling the practical use of GRAC, this research contributes to the global effort to promote sustainable development within the construction industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Mistletoe采纳,获得10
5秒前
先锋老刘001完成签到,获得积分10
5秒前
怕孤独的香菇完成签到 ,获得积分10
11秒前
YTY完成签到,获得积分10
14秒前
17秒前
21秒前
Mistletoe发布了新的文献求助10
23秒前
犹豫怀亦发布了新的文献求助10
25秒前
犹豫怀亦完成签到,获得积分10
39秒前
nicolaslcq完成签到,获得积分0
41秒前
42秒前
王彤彤发布了新的文献求助10
46秒前
默默孱完成签到 ,获得积分10
51秒前
共享精神应助王彤彤采纳,获得10
54秒前
nojego完成签到,获得积分10
58秒前
不怕考试的赵无敌完成签到 ,获得积分10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
Wind应助科研通管家采纳,获得20
1分钟前
发个15分的完成签到 ,获得积分10
1分钟前
eazin完成签到 ,获得积分10
1分钟前
myq完成签到 ,获得积分10
1分钟前
L_x完成签到 ,获得积分10
1分钟前
飞龙在天完成签到,获得积分0
1分钟前
六一儿童节完成签到 ,获得积分10
1分钟前
聪慧的小伙完成签到 ,获得积分10
1分钟前
1分钟前
金勇完成签到,获得积分10
1分钟前
王彤彤发布了新的文献求助10
1分钟前
材料若饥完成签到,获得积分10
1分钟前
王彤彤完成签到,获得积分20
2分钟前
一一完成签到 ,获得积分10
2分钟前
aiyawy完成签到 ,获得积分10
2分钟前
饱满含玉完成签到,获得积分10
2分钟前
2分钟前
故意的怜晴完成签到 ,获得积分10
2分钟前
胖胖橘完成签到 ,获得积分10
2分钟前
zhangqi发布了新的文献求助10
2分钟前
无限的若菱完成签到,获得积分20
2分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4124922
求助须知:如何正确求助?哪些是违规求助? 3662632
关于积分的说明 11590502
捐赠科研通 3362672
什么是DOI,文献DOI怎么找? 1847719
邀请新用户注册赠送积分活动 912043
科研通“疑难数据库(出版商)”最低求助积分说明 827849