Reinforcement Learning Based Markov Edge Decoupled Fusion Network for Fusion Classification of Hyperspectral and LiDAR

计算机科学 高光谱成像 人工智能 强化学习 激光雷达 融合 马尔可夫链 传感器融合 马尔可夫过程 模式识别(心理学) 机器学习 遥感 语言学 哲学 统计 数学 地质学
作者
Haoyu Wang,Yuhu Cheng,Xiaomin Liu,Xuesong Wang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 7174-7187 被引量:3
标识
DOI:10.1109/tmm.2024.3360717
摘要

Hyperspectral images (HSIs) and light detection and ranging (LiDAR) are two critical and frequently used types of remote sensing data, each containing rich spectral and elevation information. Fusing HSI and LiDAR can exploit the complementary properties of the two modalities for ground object classification. The performance of existing fusion classification methods is often limited by the difficulty of adapting feature extraction operators to complex spatial distributions, and the correlation and specificity between different modalities are not reasonably exploited. Therefore, the reinforcement learningbased markov edge decoupled fusion network (MEDFN) is proposed. This network can intelligently compose graphs based on different modal characteristics and tasks to adapt to complex spatial distributions; it can also suppress noise to complete fusion classification while fully utilizing complementary information of different modalities. First, a reinforcement learning-based graph construction subnetwork (RLGN) is proposed to learn a twomodal graph construction strategy suitable for classification tasks by transforming regular multimodal data into irregular graph data. Second, a multimodal edge attention module (MEAM) is proposed to extract edge features between spatial neighboring nodes and model the importance of each node, thereby capturing the spatial topology information encompassed in the multimodal data. Finally, the decoupled multimodal fusion module (DMFM) is proposed to decouple multimodal features into shared and unshared parts and enhance the model's ability to distinguish features by targeting the modal-shared feature between modalities and modal-specific feature. The experimental results based on three well-known HSI and LiDAR datasets demonstrate the effectiveness of the proposed MEDFN in fusion classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kiki完成签到,获得积分10
1秒前
科研通AI5应助123采纳,获得10
1秒前
桃子完成签到,获得积分10
1秒前
WayneO完成签到,获得积分10
1秒前
万安安完成签到,获得积分10
2秒前
2秒前
ym完成签到,获得积分10
2秒前
Suki发布了新的文献求助10
3秒前
3秒前
lzq完成签到 ,获得积分10
3秒前
4秒前
我是快乐的小行家完成签到,获得积分10
4秒前
Yangy_完成签到,获得积分10
4秒前
大个应助笑点低的靳采纳,获得30
4秒前
思与省发布了新的文献求助10
4秒前
罗逸发布了新的文献求助10
4秒前
5秒前
5秒前
陶醉大侠完成签到,获得积分10
5秒前
在水一方应助obsession采纳,获得10
5秒前
5秒前
5秒前
Caroline发布了新的文献求助30
5秒前
端庄飞柏发布了新的文献求助50
5秒前
说书人完成签到,获得积分10
5秒前
6秒前
ym发布了新的文献求助10
6秒前
6秒前
思源应助zheng采纳,获得10
7秒前
dream完成签到 ,获得积分10
7秒前
小蘑菇应助蝉鸣采纳,获得10
7秒前
7秒前
7秒前
7秒前
义气的牛青完成签到,获得积分10
7秒前
7秒前
8秒前
露亮发布了新的文献求助10
8秒前
8秒前
酷波er应助天天向上采纳,获得10
8秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785203
求助须知:如何正确求助?哪些是违规求助? 3330716
关于积分的说明 10247928
捐赠科研通 3046146
什么是DOI,文献DOI怎么找? 1671860
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759798