Deep leaning in food safety and authenticity detection: An integrative review and future prospects

卷积神经网络 计算机科学 人工智能 机器学习 深度学习 领域(数学) 稳健性(进化) 食品安全 算法 人工神经网络 生成对抗网络 模式 生成语法 基因 医学 生物化学 病理 社会学 化学 纯数学 社会科学 数学
作者
Yan Wang,Hui‐Wen Gu,Xiaoli Yin,Tao Geng,Wanjun Long,Haiyan Fu,Yuanbin She
出处
期刊:Trends in Food Science and Technology [Elsevier]
卷期号:146: 104396-104396 被引量:63
标识
DOI:10.1016/j.tifs.2024.104396
摘要

Food safety is an important public health issue, and deep learning (DL) algorithms can provide powerful tools and methods for food safety and authenticity detection. Compared with chemometric algorithms and traditional machine learning algorithms, the performances of DL algorithms are improved in many aspects. By learning and analyzing a large amount of data, DL models can improve the efficiency and accuracy of food safety and authenticity detection, helping to ensure the public health and safety. This paper reviews some commonly used chemometric algorithms, traditional machine learning algorithms, and popular DL algorithms. Among them, special attentions are paid to convolutional neural network (CNN), fully convolutional network (FCN) and generative adversarial network (GAN). Moreover, the auxiliary effect of GAN on CNN is highlighted. Finally, this paper revisits recent applications of DL algorithms in the field of food safety and authenticity detection, and prospects the challenges and future directions of DL algorithms in this field. Although DL has made many achievements in the field of food safety and authenticity detection, there is still a great potential for development. For example, the data augmentation function of GAN can assist CNN to obtain more training samples, thus improving the recognition rate. In addition, multimodal neural network (MNN) or multimodal attention network (MAN) can be also used to achieve the fusion of data from different modalities to further improve the robustness and accuracy of DL algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助风兮雨采纳,获得10
刚刚
FashionBoy应助秋雨绵绵采纳,获得10
3秒前
7秒前
8秒前
ruochenzu发布了新的文献求助10
9秒前
Maddy完成签到,获得积分10
9秒前
DanniSun发布了新的文献求助10
9秒前
Pheobe完成签到,获得积分10
10秒前
悦耳的曼荷完成签到,获得积分10
11秒前
11秒前
海德堡发布了新的文献求助10
12秒前
鲤鱼诗桃发布了新的文献求助10
12秒前
13秒前
orixero应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
打打应助科研通管家采纳,获得10
13秒前
13秒前
BowieHuang应助科研通管家采纳,获得10
13秒前
NaN应助科研通管家采纳,获得10
13秒前
布溜应助科研通管家采纳,获得20
13秒前
李健应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
科研通AI6应助二三采纳,获得10
14秒前
悲凉的素发布了新的文献求助10
15秒前
16秒前
力劈华山完成签到,获得积分10
16秒前
17秒前
17秒前
柚子完成签到,获得积分10
18秒前
kukudou2发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560604
求助须知:如何正确求助?哪些是违规求助? 4645922
关于积分的说明 14676435
捐赠科研通 4587037
什么是DOI,文献DOI怎么找? 2516766
邀请新用户注册赠送积分活动 1490270
关于科研通互助平台的介绍 1461099