Deep leaning in food safety and authenticity detection: An integrative review and future prospects

卷积神经网络 计算机科学 人工智能 机器学习 深度学习 领域(数学) 稳健性(进化) 食品安全 算法 人工神经网络 生成对抗网络 模式 生成语法 医学 社会科学 生物化学 化学 数学 病理 社会学 纯数学 基因
作者
Yan Wang,Hui‐Wen Gu,Xiaoli Yin,Tao Geng,Wanjun Long,Haiyan Fu,Yuanbin She
出处
期刊:Trends in Food Science and Technology [Elsevier BV]
卷期号:146: 104396-104396 被引量:27
标识
DOI:10.1016/j.tifs.2024.104396
摘要

Food safety is an important public health issue, and deep learning (DL) algorithms can provide powerful tools and methods for food safety and authenticity detection. Compared with chemometric algorithms and traditional machine learning algorithms, the performances of DL algorithms are improved in many aspects. By learning and analyzing a large amount of data, DL models can improve the efficiency and accuracy of food safety and authenticity detection, helping to ensure the public health and safety. This paper reviews some commonly used chemometric algorithms, traditional machine learning algorithms, and popular DL algorithms. Among them, special attentions are paid to convolutional neural network (CNN), fully convolutional network (FCN) and generative adversarial network (GAN). Moreover, the auxiliary effect of GAN on CNN is highlighted. Finally, this paper revisits recent applications of DL algorithms in the field of food safety and authenticity detection, and prospects the challenges and future directions of DL algorithms in this field. Although DL has made many achievements in the field of food safety and authenticity detection, there is still a great potential for development. For example, the data augmentation function of GAN can assist CNN to obtain more training samples, thus improving the recognition rate. In addition, multimodal neural network (MNN) or multimodal attention network (MAN) can be also used to achieve the fusion of data from different modalities to further improve the robustness and accuracy of DL algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhh完成签到,获得积分10
1秒前
1秒前
ZY发布了新的文献求助30
1秒前
2秒前
稚于发布了新的文献求助10
3秒前
可爱藏今完成签到,获得积分10
3秒前
6秒前
共享精神应助Richard采纳,获得10
8秒前
lulu发布了新的文献求助10
8秒前
稳重忆枫完成签到 ,获得积分10
11秒前
酷波er应助lulu采纳,获得10
11秒前
11秒前
12秒前
13秒前
科研通AI5应助蓁蓁采纳,获得30
13秒前
pojian发布了新的文献求助10
15秒前
15秒前
尽快毕业完成签到 ,获得积分10
15秒前
ZY完成签到,获得积分20
17秒前
zo发布了新的文献求助10
18秒前
Owen应助稚于采纳,获得30
19秒前
爽o发布了新的文献求助10
20秒前
gingercat完成签到,获得积分10
21秒前
科研通AI5应助司空以蕊采纳,获得10
22秒前
23秒前
流飒完成签到,获得积分10
23秒前
23秒前
jyp111应助教育技术学采纳,获得10
23秒前
酷波er应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
思源应助科研通管家采纳,获得10
26秒前
所所应助科研通管家采纳,获得10
26秒前
Hello应助科研通管家采纳,获得10
26秒前
26秒前
科研通AI5应助剩饭的狗采纳,获得10
28秒前
28秒前
ll完成签到,获得积分10
29秒前
29秒前
李莉莉发布了新的文献求助10
30秒前
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787714
求助须知:如何正确求助?哪些是违规求助? 3333335
关于积分的说明 10261246
捐赠科研通 3049024
什么是DOI,文献DOI怎么找? 1673399
邀请新用户注册赠送积分活动 801874
科研通“疑难数据库(出版商)”最低求助积分说明 760385