Investigating pre-service teachers’ artificial intelligence perception from the perspective of planned behavior theory

心理学 结构方程建模 相关性(法律) 规范(哲学) 差异(会计) 探索性研究 感知 体验式学习 应用心理学 数学教育 计算机科学 会计 机器学习 神经科学 社会学 政治学 人类学 法学 业务
作者
Ismaila Temitayo Sanusi,Musa Adekunle Ayanwale,Adebayo Emmanuel Tolorunleke
出处
期刊:Computers & Education: Artificial Intelligence [Elsevier BV]
卷期号:6: 100202-100202 被引量:14
标识
DOI:10.1016/j.caeai.2024.100202
摘要

There is a need for teachers who are prepared to teach Artificial Intelligence (AI) across the K-12 learning contexts. Owing to the dearth of teacher education programmes on AI, it is helpful to explore factors to be considered in designing an effective AI programme for future teachers. We posit that understanding how to encourage pre-service teachers to learn AI is thus critical for practitioners and policymakers while designing effective instructional AI teacher education programmes. This exploratory study examined the perceptions of pre-service teachers and their behavioral intention to learn AI, by identifying factors that might affect learning and promoting AI in teacher preparation programmes. This study proposed a research model supported by the theory of planned behavior and expanded with other constructs. The factors that were examined include basic knowledge of AI, subjective norm, AI for social good, perceived self-efficacy, self-transcendent goals, personal relevance, AI anxiety, behavioral intention to learn AI, and actual learning of AI. Using a duly validated questionnaire, we surveyed 796 pre-service teachers in Nigerian Universities. Through structural equation modeling approach analyses, our proposed model explains about 79% of the variance in pre-service teachers' intention to learn AI. Basic knowledge and subjective norm were found to be the most important determinant in pre-service teachers' intention to learn AI. All our hypotheses were supported except for self-efficacy and personal relevance, personal relevance and social good, and behavioral intention and actual learning behavior. The findings provide practitioners, researchers, and policymakers with valuable information to consider in designing effective AI teacher education programmes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助外向幻雪采纳,获得10
1秒前
paojiao不辣完成签到,获得积分10
1秒前
2秒前
台运亮发布了新的文献求助10
3秒前
jenningseastera应助帅帅哈采纳,获得10
3秒前
头头完成签到,获得积分10
4秒前
怡然铃铛发布了新的文献求助10
6秒前
义气山柳完成签到,获得积分10
6秒前
汉堡包应助暴躁的鸿采纳,获得10
8秒前
8秒前
壮观的大山完成签到,获得积分10
13秒前
13秒前
PL发布了新的文献求助10
14秒前
14秒前
14秒前
无风海完成签到,获得积分10
17秒前
lilili发布了新的文献求助30
17秒前
17秒前
17秒前
外向幻雪发布了新的文献求助10
18秒前
PL完成签到,获得积分10
19秒前
SYLH应助LL采纳,获得10
20秒前
万能图书馆应助阿飞采纳,获得10
20秒前
Hello应助痴情的博超采纳,获得100
21秒前
幺零零完成签到,获得积分10
21秒前
甜儿发布了新的文献求助10
21秒前
阿松发布了新的文献求助10
22秒前
23秒前
bryceeluo完成签到,获得积分10
23秒前
无花果应助DDDiamond采纳,获得10
24秒前
123652完成签到,获得积分10
24秒前
25秒前
li完成签到,获得积分10
25秒前
27秒前
xiewuhua发布了新的文献求助10
27秒前
jackten发布了新的文献求助10
28秒前
28秒前
阿飞发布了新的文献求助10
30秒前
阿松完成签到,获得积分10
31秒前
xu完成签到 ,获得积分10
31秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826657
求助须知:如何正确求助?哪些是违规求助? 3368959
关于积分的说明 10453258
捐赠科研通 3088511
什么是DOI,文献DOI怎么找? 1699172
邀请新用户注册赠送积分活动 817281
科研通“疑难数据库(出版商)”最低求助积分说明 770148