Investigating the impact of high-altitude on vehicle carbon emissions: A comprehensive on-road driving study

环境科学 温室气体 高度(三角形) 碳纤维 运输工程 环境工程 工程类 计算机科学 生态学 几何学 数学 算法 复合数 生物
作者
Zhiwen Jiang,Lin Wu,Hong Niu,Zhenyu Jia,Zhaoyu Qi,Yan Liu,Qi‐Jun Zhang,Ting Wang,Jianfei Peng,Hongjun Mao
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:: 170671-170671
标识
DOI:10.1016/j.scitotenv.2024.170671
摘要

This study addresses the literature gap concerning accurately identifying vehicle carbon emission characteristics in high-altitude areas. Utilizing a portable emission measurement system (PEMS) for real-world testing, we quantified the influence of altitude on carbon emissions from light-duty gasoline (LDGV) and diesel vehicles (LDDV). The Random Forest (RF) algorithm was employed to analyze the complex nonlinear relationships between altitude, meteorological conditions, driving patterns, and carbon dioxide (CO2) emissions, enabling predictions across different altitudes. The results showed that CO2 emissions progressively increase with elevation. Furthermore, as altitude increases, combustion efficiency declines, and the overall impact of driving conditions on emission rates diminishes. Altitude and meteorological factors significantly contributed to CO2 emissions, whereas driving conditions and road grades contributed less. Compared with the COPERT model, the RF model demonstrates strong accuracy in predicting carbon emissions at different altitudes. Specifically, the CO2 emission rate nearly triples as altitude increases from 2.0 km to 4.5 km. This research bridges a critical gap in the understanding carbon emissions from high-altitude vehicles, offering insights into policy development for emission reduction strategies in such regions. Future studies should integrate diverse testing methodologies and comprehensive surveys to validate and extend the findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柠檬完成签到,获得积分10
刚刚
1秒前
CipherSage应助小吕采纳,获得10
2秒前
pianoboy发布了新的文献求助10
3秒前
zhhh发布了新的文献求助10
3秒前
3秒前
文承龙发布了新的文献求助10
4秒前
4秒前
半疆完成签到,获得积分10
5秒前
康康康完成签到,获得积分20
5秒前
xiao123789发布了新的文献求助10
5秒前
5秒前
jzy发布了新的文献求助10
6秒前
6秒前
情怀应助淡漠采纳,获得10
7秒前
星辰完成签到,获得积分10
7秒前
7秒前
8秒前
JustinLiu发布了新的文献求助10
8秒前
哈哈哈发布了新的文献求助10
8秒前
徐宝境完成签到 ,获得积分10
9秒前
Zachary发布了新的文献求助10
9秒前
9秒前
10秒前
qq发布了新的文献求助10
11秒前
wjx完成签到,获得积分10
11秒前
慕青应助会撒娇的芝麻采纳,获得10
11秒前
11秒前
11秒前
12秒前
12秒前
rain完成签到,获得积分10
12秒前
12秒前
爆米花应助嘻嘻采纳,获得10
12秒前
zz发布了新的文献求助10
13秒前
gtt关注了科研通微信公众号
13秒前
今后应助Toweler采纳,获得10
14秒前
顺其自然发布了新的文献求助10
14秒前
15秒前
15秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835693
求助须知:如何正确求助?哪些是违规求助? 3378029
关于积分的说明 10501900
捐赠科研通 3097669
什么是DOI,文献DOI怎么找? 1705937
邀请新用户注册赠送积分活动 820760
科研通“疑难数据库(出版商)”最低求助积分说明 772260