Spatial Analysis for Natural Gas Pipeline Routing, Monitoring, and High-Risk Areas Identification

天然气 管道(软件) 鉴定(生物学) 管道运输 环境科学 布线(电子设计自动化) 石油工程 计算机科学 土木工程 工程类 环境工程 废物管理 计算机网络 植物 生物 程序设计语言
作者
Amirali Mahjoob,Younes Noorollahi,M.S. Naghavi
出处
期刊:Journal of Pipeline Systems Engineering and Practice [American Society of Civil Engineers]
卷期号:15 (2)
标识
DOI:10.1061/jpsea2.pseng-1473
摘要

The pipeline is the fundamental means of transporting natural gas between the reservoir and the point of consumption. Despite the systems’ low cost and high reliability, potential pipeline failures would cause serious human injury, environmental impact, and financial costs. In order to reduce these damages, it is essential to study risk factors and investigate high-risk locations using existing risk factors. Spatial analysis is an appropriate method for studying environmental phenomena. Considering the extent of various factors influencing pipeline risk and their spatial dependence, we conducted a spatial analysis using ArcGIS to identify vulnerable areas and high-risk points in natural gas pipelines. For this purpose, the local influencing factors and their impact distance were determined by reviewing previous studies and then scored according to the risk level using the analytic hierarchy process (AHP) method. The risk of natural gas pipelines was then analyzed using these scores, the relationships developed, and the maps produced from the various factors. The results showed that most gas pipelines are exposed to various risks including dangers and geographical risks. Among these risks, faults play an important role, affecting about 97% of natural gas pipelines. In general, out of 13,875 km of general Iranian natural gas pipelines, 13,411 km are in various risk areas and 1,054 km are in high-risk areas, which are located at more than 4,300 points. The study of planned pipeline routes for future development also showed that these lines are located in relatively suitable areas. However, some changes to the routes could reduce the risks. Identifying the type and amount of risk on each pipeline helps experts choose a method with reasonable cost and sufficient efficiency for monitoring the pipeline according to the need.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
冷酷的若剑完成签到,获得积分10
2秒前
wbscz发布了新的文献求助10
2秒前
zakarya发布了新的文献求助10
3秒前
3秒前
sword完成签到,获得积分10
4秒前
大个应助浩浩桑采纳,获得10
5秒前
Fiona678发布了新的文献求助10
5秒前
唐若冰完成签到,获得积分10
6秒前
7秒前
8秒前
Ray发布了新的文献求助10
9秒前
xiaoxiao发布了新的文献求助10
12秒前
知性的颜发布了新的文献求助10
12秒前
13秒前
18秒前
冷酷的若剑发布了新的文献求助200
22秒前
jennica发布了新的文献求助10
22秒前
终梦应助负责的方盒采纳,获得10
23秒前
许甜甜鸭应助Jay采纳,获得10
23秒前
willlee完成签到 ,获得积分10
23秒前
领导范儿应助Ray采纳,获得10
25秒前
26秒前
weiyi完成签到,获得积分10
27秒前
27秒前
hwq123完成签到,获得积分10
29秒前
32秒前
ysx完成签到,获得积分20
32秒前
666发布了新的文献求助30
33秒前
33秒前
33秒前
情怀应助weiyi采纳,获得10
34秒前
小蘑菇应助xxn采纳,获得10
36秒前
开开发布了新的文献求助10
37秒前
FashionBoy应助勾晓彤采纳,获得10
37秒前
浩浩桑发布了新的文献求助10
37秒前
成就的孤晴完成签到 ,获得积分10
38秒前
唠叨的耷完成签到,获得积分10
41秒前
42秒前
儒雅的冷松完成签到,获得积分10
42秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829407
求助须知:如何正确求助?哪些是违规求助? 3372039
关于积分的说明 10470425
捐赠科研通 3091592
什么是DOI,文献DOI怎么找? 1701274
邀请新用户注册赠送积分活动 818330
科研通“疑难数据库(出版商)”最低求助积分说明 770830