Ultrasensitive SERS quantitative detection of antioxidants via diazo derivatization reaction and deep learning for signal fluctuation mitigation

衍生化 重氮 BSTFA公司 拉曼散射 检出限 化学 拉曼光谱 抗氧化剂 胶体金 纳米颗粒 组合化学 纳米技术 色谱法 材料科学 有机化学 高效液相色谱法 物理 光学
作者
Wenhui Li,Yingxin Chen,Xin Li,Yi Zhong,Pei Xu,Yuanjie Teng
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:313: 124086-124086
标识
DOI:10.1016/j.saa.2024.124086
摘要

Synthetic antioxidants serve as essential protectors against oxidation and deterioration of edible oils, however, prudent evaluation is necessary regarding potential health risks associated with excessive intake. The direct adsorption of antioxidants onto conventional surface-enhanced Raman scattering (SERS) substrates is challenging due to the presence of phenolic hydroxyl groups in their molecular structures, resulting in weak Raman scattering signals and rendering direct SERS detection difficult. In this study, a diazo derivatization reaction was employed to enhance SERS signals by converting antioxidant molecules into azo derivatives, enabling the amplification of the weak Raman scattering signals through the strong vibrational modes induced by the N = N double bond. The resulting diazo derivatives were characterized using UV-visible absorption and infrared spectroscopy, confirming the occurrence of diazo derivatization of the antioxidants. The proposed method successfully achieved the rapid detection of three commonly used synthetic antioxidants, namely butylated hydroxyanisole (BHA), tert-butylhydroquinone (TBHQ), and propyl gallate (PG) on interfacial self-assembled gold nanoparticles. Furthermore, rapid predictions of BHA, PG, and TBHQ within the concentration range of 1 × 10-6 to 2 × 10-3 mol/L were achieved by integrating a convolutional neural network model. The predictive range of this model surpassed the traditional quantitative method of manually selecting characteristic peaks, with linear coefficients (R2) of 0.9992, 0.9997, and 0.9997, respectively. The recovery of antioxidants in real soybean oil samples ranged from 73.0 % to 126.4 %. Based on diazo derivatization, the proposed SERS method eliminates the need for complex substrates and enables the analysis and determination of synthetic antioxidants in edible oils within 20 min, providing a convenient analytical approach for quality control in the food industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rxm完成签到,获得积分10
1秒前
1秒前
马小马发布了新的文献求助10
1秒前
情怀应助maizai采纳,获得10
1秒前
2秒前
岳凯发布了新的文献求助10
3秒前
笨笨芯发布了新的文献求助10
3秒前
zjj发布了新的文献求助10
4秒前
ysws完成签到,获得积分10
4秒前
香蕉觅云应助town1223采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
5秒前
土味霸总完成签到,获得积分10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得30
6秒前
无花果应助科研通管家采纳,获得10
6秒前
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
pluto应助lx采纳,获得20
7秒前
8秒前
共享精神应助昵称昵昵采纳,获得10
9秒前
sy发布了新的文献求助10
9秒前
9秒前
小芋泥完成签到,获得积分10
9秒前
李建芳完成签到,获得积分20
10秒前
NexusExplorer应助Zz采纳,获得10
11秒前
强强嘻嘻发布了新的文献求助30
13秒前
13秒前
胡秃秃完成签到,获得积分10
14秒前
如意的妙竹关注了科研通微信公众号
14秒前
农夫完成签到,获得积分0
14秒前
SYLH应助豆子采纳,获得30
14秒前
15秒前
obcx完成签到,获得积分10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787625
求助须知:如何正确求助?哪些是违规求助? 3333214
关于积分的说明 10260263
捐赠科研通 3048828
什么是DOI,文献DOI怎么找? 1673284
邀请新用户注册赠送积分活动 801756
科研通“疑难数据库(出版商)”最低求助积分说明 760338