已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Efficient prediction of hydrogen storage performance in depleted gas reservoirs using machine learning

石油工程 环境科学 氢气储存 工艺工程 计算机科学 化学 核工程 化学工程 材料科学 工程类 有机化学
作者
Shaowen Mao,Bailian Chen,Mohamed Lamine Malki,Fangxuan Chen,Misael Morales,Zhiwei Ma,Mohamed Mehana
出处
期刊:Applied Energy [Elsevier BV]
卷期号:361: 122914-122914 被引量:11
标识
DOI:10.1016/j.apenergy.2024.122914
摘要

Underground hydrogen (H2) storage (UHS) has emerged as a promising technology to facilitate the widespread adoption of fluctuating renewable energy sources. However, the current UHS experience primarily focuses on salt caverns, with no working examples of storing pure H2 in porous reservoirs. A key challenge in UHS within porous rocks is the uncertainty in evaluating storage performance due to complicated geological and operational conditions. While physics-based reservoir simulations are commonly used to quantify H2 injection and withdrawal processes during storage cycles, they are computationally demanding and unsuitable for providing rapid support to UHS operations. In this study, we develop efficient reduced-order models (ROMs) for UHS in depleted natural gas reservoirs using deep neural networks (DNNs) based on comprehensive reservoir simulation data sets. The ROMs can accurately forecast UHS performance metrics (H2 withdrawal efficiency, produced H2 purity, produced gas-water ratio) across various geological and operational conditions and are over 22000 times faster than physics-based simulations. Then, we employ the ROMs for sensitivity analysis to assess the impact of geological and operational parameters on UHS performance and conduct uncertainty quantification to characterize potential performance and associated probabilities. Lastly, we present a field case study from the Dakota formation of the Basin field in the Intermountain-West (I-WEST) region, USA. Based on the ROMs' predictions, Dakota formation is favorable for UHS due to its high H2 withdrawal efficiency and purity, and low water production risk. By optimizing operational parameters, we can further improve the storage performance in Dakota formation and reduce the uncertainty in UHS performance prediction. This study introduces an efficient ROM-based approach to assess and optimize UHS performance, supporting the development of effective UHS projects in depleted gas reservoirs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健壮惋清完成签到 ,获得积分10
1秒前
凡仔完成签到,获得积分10
2秒前
顾矜应助SCL采纳,获得30
3秒前
骆丹妗完成签到 ,获得积分10
4秒前
xzy998应助桃李春风一杯酒采纳,获得10
5秒前
善学以致用应助zhuang采纳,获得10
6秒前
samtol完成签到,获得积分10
7秒前
万能图书馆应助memory采纳,获得10
16秒前
123发布了新的文献求助10
17秒前
桃李春风一杯酒完成签到,获得积分10
22秒前
chujun_cai完成签到 ,获得积分10
23秒前
XPX完成签到 ,获得积分10
24秒前
25秒前
哈基米德举报闵问柳求助涉嫌违规
26秒前
wumumu完成签到,获得积分10
26秒前
小王完成签到,获得积分10
28秒前
仙女完成签到 ,获得积分10
33秒前
TIMF14发布了新的文献求助10
34秒前
Enma发布了新的文献求助10
35秒前
pharmstudent完成签到,获得积分10
38秒前
Arthur完成签到 ,获得积分10
39秒前
vdsvdkm完成签到,获得积分10
41秒前
TIMF14完成签到,获得积分10
44秒前
123完成签到,获得积分10
45秒前
Damon完成签到 ,获得积分10
46秒前
薯条完成签到 ,获得积分10
48秒前
灵巧的以亦完成签到 ,获得积分10
49秒前
bbq完成签到,获得积分10
54秒前
55秒前
1分钟前
Jasper应助小葡萄采纳,获得10
1分钟前
1分钟前
1分钟前
sunnyfriend完成签到,获得积分10
1分钟前
高高菠萝完成签到 ,获得积分10
1分钟前
萝卜丁完成签到 ,获得积分0
1分钟前
上官若男应助冰雪痕采纳,获得10
1分钟前
1分钟前
1分钟前
小葡萄发布了新的文献求助10
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4123962
求助须知:如何正确求助?哪些是违规求助? 3661822
关于积分的说明 11590008
捐赠科研通 3362392
什么是DOI,文献DOI怎么找? 1847535
邀请新用户注册赠送积分活动 911983
科研通“疑难数据库(出版商)”最低求助积分说明 827823