A semantic-driven coupled network for infrared and visible image fusion

计算机科学 特征(语言学) 人工智能 融合 模式识别(心理学) 分割 过程(计算) 像素 计算机视觉 模态(人机交互) 代表(政治) 语义特征 语言学 哲学 政治 政治学 法学 操作系统
作者
Xiaowen Liu,Hongtao Huo,Jing Li,Shan Pang,Bowen Zheng
出处
期刊:Information Fusion [Elsevier BV]
卷期号:108: 102352-102352 被引量:32
标识
DOI:10.1016/j.inffus.2024.102352
摘要

In order to be adapted to high-level vision tasks, several infrared and visible image fusion methods cascade with the downstream network to enhance the semantic information of fusion results. However, due to the feature-level heterogeneities between fusion and downstream tasks, these methods suffer from the loss of pixel-level information and incomplete reconstruction of semantic-level information. To further improve the performance of fusion images in high-level vision tasks, we propose a semantic-driven coupled network for infrared and visible image fusion, terms as SDCFusion. Firstly, to address feature heterogeneity, we couple the segmentation and fusion networks into a joint framework such that both networks share the multi-level cross-modality coupled features. Based on the joint optimization of dual tasks, a joint action between fusion and downstream tasks is formed to force the cross-modality coupled features modeled on both pixel domain and semantic domain. Subsequently, to guide the semantic information reconstruction, we cascade two networks to form the semantic-based driven action, which continuously optimizes the fusion image to achieve semantic representation capacity. In addition, we introduce an adaptive training strategy to reduce the complexity of dual-task training. Specifically, an mIoU-based semantic measurement weight is designed to balance the joint action and driven action throughout the training process. We evaluate our method at both pixel information and semantic information levels, respectively. The qualitative and quantitative experiments verify the superiority of SDCFusion in terms of visual effects and metrics. The object detection and semantic segmentation experiments demonstrate that SDCFusion achieves superior performance in high-level vision tasks. The source code is available at https://github.com/XiaoW-Liu/SDCFusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TillySss发布了新的文献求助50
1秒前
喜悦如霜完成签到 ,获得积分10
1秒前
浮游应助Hilda007采纳,获得10
3秒前
4秒前
PG发布了新的文献求助10
4秒前
5秒前
我爱螺蛳粉完成签到 ,获得积分10
6秒前
lilianan发布了新的文献求助10
6秒前
7秒前
科研通AI5应助kangzhh采纳,获得10
7秒前
11完成签到,获得积分20
7秒前
ZY完成签到 ,获得积分10
8秒前
陈冰冰发布了新的文献求助10
8秒前
9秒前
科研通AI6应助昏睡的蟠桃采纳,获得50
9秒前
9秒前
12秒前
14秒前
HYYY发布了新的文献求助10
14秒前
研友_nv2r4n发布了新的文献求助10
15秒前
16秒前
ZWY完成签到,获得积分10
16秒前
北辰星关注了科研通微信公众号
17秒前
来路遥迢完成签到,获得积分10
18秒前
五十发布了新的文献求助10
18秒前
18秒前
yumemakase发布了新的文献求助10
19秒前
一条咸鱼关注了科研通微信公众号
19秒前
量子星尘发布了新的文献求助50
19秒前
vickie完成签到,获得积分20
20秒前
21秒前
Kyrie发布了新的文献求助10
21秒前
22秒前
22秒前
研友_nv2r4n完成签到,获得积分10
22秒前
科研通AI6应助青年才俊采纳,获得10
23秒前
puppy发布了新的文献求助10
23秒前
23秒前
十七发布了新的文献求助10
24秒前
文静紫易完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075598
求助须知:如何正确求助?哪些是违规求助? 4295360
关于积分的说明 13384177
捐赠科研通 4117030
什么是DOI,文献DOI怎么找? 2254637
邀请新用户注册赠送积分活动 1259275
关于科研通互助平台的介绍 1192040