A semantic-driven coupled network for infrared and visible image fusion

计算机科学 特征(语言学) 人工智能 融合 模式识别(心理学) 分割 过程(计算) 像素 计算机视觉 模态(人机交互) 代表(政治) 语义特征 语言学 哲学 政治 政治学 法学 操作系统
作者
Xiaowen Liu,Hongtao Huo,Jing Li,Shan Pang,Bowen Zheng
出处
期刊:Information Fusion [Elsevier BV]
卷期号:108: 102352-102352 被引量:20
标识
DOI:10.1016/j.inffus.2024.102352
摘要

In order to be adapted to high-level vision tasks, several infrared and visible image fusion methods cascade with the downstream network to enhance the semantic information of fusion results. However, due to the feature-level heterogeneities between fusion and downstream tasks, these methods suffer from the loss of pixel-level information and incomplete reconstruction of semantic-level information. To further improve the performance of fusion images in high-level vision tasks, we propose a semantic-driven coupled network for infrared and visible image fusion, terms as SDCFusion. Firstly, to address feature heterogeneity, we couple the segmentation and fusion networks into a joint framework such that both networks share the multi-level cross-modality coupled features. Based on the joint optimization of dual tasks, a joint action between fusion and downstream tasks is formed to force the cross-modality coupled features modeled on both pixel domain and semantic domain. Subsequently, to guide the semantic information reconstruction, we cascade two networks to form the semantic-based driven action, which continuously optimizes the fusion image to achieve semantic representation capacity. In addition, we introduce an adaptive training strategy to reduce the complexity of dual-task training. Specifically, an mIoU-based semantic measurement weight is designed to balance the joint action and driven action throughout the training process. We evaluate our method at both pixel information and semantic information levels, respectively. The qualitative and quantitative experiments verify the superiority of SDCFusion in terms of visual effects and metrics. The object detection and semantic segmentation experiments demonstrate that SDCFusion achieves superior performance in high-level vision tasks. The source code is available at https://github.com/XiaoW-Liu/SDCFusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
dasaber发布了新的文献求助10
2秒前
张nmky完成签到,获得积分20
3秒前
clueless完成签到,获得积分10
5秒前
Hrx完成签到,获得积分10
5秒前
无私绿兰发布了新的文献求助10
5秒前
科研通AI2S应助一小碗采纳,获得10
6秒前
忐忑的黄豆完成签到,获得积分10
6秒前
Yuan发布了新的文献求助10
6秒前
猪猪hero发布了新的文献求助10
8秒前
Rita发布了新的文献求助10
8秒前
10秒前
10秒前
豆丁完成签到,获得积分10
10秒前
10秒前
1111发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
14秒前
14秒前
ljhtxf发布了新的文献求助10
16秒前
hukun100发布了新的文献求助10
16秒前
不配.应助cola采纳,获得60
16秒前
小蘑菇应助诸乌采纳,获得10
16秒前
19秒前
丫头发布了新的文献求助10
21秒前
21秒前
MJ发布了新的文献求助10
22秒前
22秒前
orixero应助野性的友灵采纳,获得10
23秒前
猪猪hero发布了新的文献求助10
23秒前
Viva发布了新的文献求助10
25秒前
不配.应助cola采纳,获得60
26秒前
26秒前
27秒前
28秒前
heather发布了新的文献求助20
29秒前
Grape完成签到,获得积分10
29秒前
提提完成签到,获得积分20
30秒前
高分求助中
Organic Chemistry 10086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Single/synchronous adsorption of Cu(II), Cd(II) and Cr(VI) in water by layered double hydroxides doped with different divalent metals 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4291141
求助须知:如何正确求助?哪些是违规求助? 3818305
关于积分的说明 11957331
捐赠科研通 3461777
什么是DOI,文献DOI怎么找? 1898733
邀请新用户注册赠送积分活动 947299
科研通“疑难数据库(出版商)”最低求助积分说明 850032