Neural Network Estimators for Optimal Tour Lengths of Traveling Salesperson Problem Instances with Arbitrary Node Distributions

计算机科学 估计员 旅行商问题 节点(物理) 人工神经网络 数学优化 布线(电子设计自动化) 领域(数学分析) 特征(语言学) 集合(抽象数据类型) 计算复杂性理论 元启发式 人工智能 算法 数学 计算机网络 数学分析 语言学 统计 哲学 结构工程 工程类 程序设计语言
作者
Taha Varol,Okan Örsan Özener,Erinç Albey
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:58 (1): 45-66 被引量:4
标识
DOI:10.1287/trsc.2022.0015
摘要

It is essential to solve complex routing problems to achieve operational efficiency in logistics. However, because of their complexity, these problems are often tackled sequentially using cluster-first, route-second frameworks. Unfortunately, such two-phase frameworks can suffer from suboptimality due to the initial phase. To address this issue, we propose leveraging information about the optimal tour lengths of potential clusters as a preliminary step, transforming the two-phase approach into a less myopic solution framework. We introduce quick and highly accurate Traveling Salesperson Problem (TSP) tour length estimators based on neural networks (NNs) to facilitate this. Our approach combines the power of NNs and theoretical knowledge in the routing domain, utilizing a novel feature set that includes node-level, instance-level, and solution-level features. This hybridization of data and domain knowledge allows us to achieve predictions with an average deviation of less than 0.7% from optimality. Unlike previous studies, we design and employ new instances replicating real-life logistics networks and morphologies. These instances possess characteristics that introduce significant computational costs, making them more challenging. To address these challenges, we develop a novel and efficient method for obtaining lower bounds and partial solutions to the TSP, which are subsequently utilized as solution-level predictors. Our computational study demonstrates a prediction error up to six times lower than the best machine learning (ML) methods on their training instances and up to 100 times lower prediction error on out-of-distribution test instances. Furthermore, we integrate our proposed ML models with metaheuristics to create an enumeration-like solution framework, enabling the improved solution of massive-scale routing problems. In terms of solution time and quality, our approach significantly outperforms the state-of-the-art solver, demonstrating the potential of our features, models, and the proposed method. History: This paper has been accepted for the Transportation Science Special Issue on Machine Learning Methods and Applications in Large-Scale Route Planning Problems. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0015 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sia关闭了Sia文献求助
1秒前
1秒前
末123456发布了新的文献求助10
1秒前
2秒前
坦率的万言应助小生有礼采纳,获得10
2秒前
杨振完成签到,获得积分10
2秒前
花照林完成签到,获得积分10
2秒前
阿飞完成签到,获得积分10
2秒前
科目三应助77采纳,获得10
3秒前
ding应助飘逸小蕊采纳,获得10
3秒前
3秒前
3秒前
3秒前
wyd发布了新的文献求助10
3秒前
乐乐应助糊涂的剑采纳,获得10
3秒前
wanci应助杨昊采纳,获得10
4秒前
mcqm发布了新的文献求助10
4秒前
4秒前
小吴没烦恼完成签到 ,获得积分10
5秒前
七窍通了六窍完成签到,获得积分10
5秒前
末123456完成签到,获得积分10
6秒前
hanjresearch完成签到,获得积分10
6秒前
霸王萝卜丝完成签到,获得积分10
7秒前
W某人发布了新的文献求助30
7秒前
小马甲应助完美夏天采纳,获得10
7秒前
7秒前
李健应助peterlzb1234567采纳,获得10
8秒前
8秒前
秋子骞发布了新的文献求助30
8秒前
XHY123发布了新的文献求助10
8秒前
bofu发布了新的文献求助10
8秒前
张炎红发布了新的文献求助10
9秒前
9秒前
9秒前
糊涂的剑完成签到,获得积分10
10秒前
专注涵雁发布了新的文献求助10
10秒前
Hello应助DQ采纳,获得10
10秒前
小八完成签到 ,获得积分10
10秒前
小透明发布了新的文献求助10
11秒前
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Chalcogen–Nitrogen Chemistry 800
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4025303
求助须知:如何正确求助?哪些是违规求助? 3565094
关于积分的说明 11348220
捐赠科研通 3296235
什么是DOI,文献DOI怎么找? 1815563
邀请新用户注册赠送积分活动 890133
科研通“疑难数据库(出版商)”最低求助积分说明 813300