Multimodal Emotion Recognition with Deep Learning: Advancements, challenges, and future directions

计算机科学 领域 深度学习 数据科学 领域(数学分析) 情感计算 情绪分析 人工智能 钥匙(锁) 理解力 光学(聚焦) 人机交互 数学分析 物理 数学 计算机安全 光学 政治学 法学 程序设计语言
作者
Geetha Vijayaraghavan,T. Mala,Das P,E. Uma
出处
期刊:Information Fusion [Elsevier BV]
卷期号:105: 102218-102218 被引量:91
标识
DOI:10.1016/j.inffus.2023.102218
摘要

In recent years, affective computing has become a topic of considerable interest, driven by its ability to enhance several domains, such as mental health monitoring, human–computer interaction, and personalized advertising. The progress of affective computing has been extensively supported by the emergence of sub-domains such as sentiment analysis and emotion recognition. Furthermore, Deep Learning (DL) techniques have made significant advancements in the realm of emotion recognition, resulting in the emergence of Multimodal Emotion Recognition (MER) systems that are capable of effectively processing data from various sources, such as audio, video, and text. However, despite the considerable progress made, there are still several challenges that persist in MER systems. Moreover, existing surveys often lack a specific focus on MER and the associated DL architectures. To address these research gaps, this study provides an in-depth systematic review of DL-based MER systems. This review encompasses the recent state-of-the-art models, foundational theories, DL architectures, mechanisms for fusing multimodal information, relevant datasets, performance evaluation, and practical applications. Additionally, the study identifies key challenges and limitations in MER systems and suggests future research opportunities. The main objective of this review is to provide a thorough comprehension of the present cutting-edge MER, thus enabling researchers in both academia and industry to stay up to date with the most recent developments in this rapidly evolving domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助饭团不吃鱼采纳,获得10
1秒前
清风应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得30
1秒前
今后应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
orixero应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
李爱国应助现实的筮采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得50
3秒前
上官若男应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
杜康发布了新的文献求助10
4秒前
4秒前
勤奋的猫咪完成签到,获得积分10
5秒前
ccm应助高贵宛海采纳,获得10
7秒前
七七完成签到,获得积分10
8秒前
研友_VZG7GZ应助学术学徒采纳,获得10
8秒前
9秒前
叁叁完成签到 ,获得积分10
10秒前
DONG发布了新的文献求助10
10秒前
FashionBoy应助拓跋箴采纳,获得10
10秒前
11秒前
11秒前
无花果应助今天我瘦了吗采纳,获得10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264928
求助须知:如何正确求助?哪些是违规求助? 4425065
关于积分的说明 13775359
捐赠科研通 4300354
什么是DOI,文献DOI怎么找? 2359671
邀请新用户注册赠送积分活动 1355731
关于科研通互助平台的介绍 1317058