Multimodal Emotion Recognition with Deep Learning: Advancements, challenges, and future directions

计算机科学 领域 深度学习 数据科学 领域(数学分析) 情感计算 情绪分析 人工智能 钥匙(锁) 理解力 光学(聚焦) 人机交互 数学分析 物理 数学 计算机安全 光学 政治学 法学 程序设计语言
作者
Geetha Vijayaraghavan,T. Mala,Das P,E. Uma
出处
期刊:Information Fusion [Elsevier BV]
卷期号:105: 102218-102218 被引量:60
标识
DOI:10.1016/j.inffus.2023.102218
摘要

In recent years, affective computing has become a topic of considerable interest, driven by its ability to enhance several domains, such as mental health monitoring, human–computer interaction, and personalized advertising. The progress of affective computing has been extensively supported by the emergence of sub-domains such as sentiment analysis and emotion recognition. Furthermore, Deep Learning (DL) techniques have made significant advancements in the realm of emotion recognition, resulting in the emergence of Multimodal Emotion Recognition (MER) systems that are capable of effectively processing data from various sources, such as audio, video, and text. However, despite the considerable progress made, there are still several challenges that persist in MER systems. Moreover, existing surveys often lack a specific focus on MER and the associated DL architectures. To address these research gaps, this study provides an in-depth systematic review of DL-based MER systems. This review encompasses the recent state-of-the-art models, foundational theories, DL architectures, mechanisms for fusing multimodal information, relevant datasets, performance evaluation, and practical applications. Additionally, the study identifies key challenges and limitations in MER systems and suggests future research opportunities. The main objective of this review is to provide a thorough comprehension of the present cutting-edge MER, thus enabling researchers in both academia and industry to stay up to date with the most recent developments in this rapidly evolving domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
失眠醉易应助失眠的海云采纳,获得10
2秒前
细心行云完成签到,获得积分10
2秒前
qyang完成签到 ,获得积分10
2秒前
天天发布了新的文献求助20
3秒前
acers发布了新的文献求助10
5秒前
lht完成签到 ,获得积分10
6秒前
安详的未来完成签到,获得积分10
7秒前
8秒前
Jasper应助wen采纳,获得10
9秒前
9秒前
9秒前
S77完成签到,获得积分0
9秒前
Volume完成签到,获得积分10
10秒前
冬菊完成签到 ,获得积分10
11秒前
12秒前
我是老大应助困困包采纳,获得10
12秒前
dd完成签到,获得积分10
12秒前
12秒前
orixero应助丙丙sunny采纳,获得10
12秒前
tangaohao_123456完成签到,获得积分10
12秒前
13秒前
zz发布了新的文献求助10
14秒前
14秒前
SciGPT应助qq158014169采纳,获得10
15秒前
treasure完成签到,获得积分10
16秒前
香蕉觅云应助沐星采纳,获得10
16秒前
Kate发布了新的文献求助10
16秒前
一颗药顽发布了新的文献求助10
17秒前
18秒前
天天完成签到,获得积分10
18秒前
ztl完成签到 ,获得积分10
18秒前
慎独而已发布了新的文献求助10
18秒前
19秒前
21秒前
周周发布了新的文献求助10
21秒前
没咋了完成签到,获得积分20
21秒前
欧阳完成签到,获得积分10
21秒前
大波斯菊发布了新的文献求助10
21秒前
莫友安完成签到 ,获得积分10
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789328
求助须知:如何正确求助?哪些是违规求助? 3334334
关于积分的说明 10269432
捐赠科研通 3050794
什么是DOI,文献DOI怎么找? 1674162
邀请新用户注册赠送积分活动 802530
科研通“疑难数据库(出版商)”最低求助积分说明 760693