已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting fluid–structure interaction with graph neural networks

物理 人工神经网络 统计物理学 人工智能 计算机科学
作者
Rui Gao,Rajeev K. Jaiman
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (1) 被引量:4
标识
DOI:10.1063/5.0182801
摘要

We present a rotation equivariant, quasi-monolithic graph neural network framework for the reduced-order modeling (ROM) of fluid–structure interaction systems. With the aid of an arbitrary Lagrangian–Eulerian (ALE) formulation, the system states are evolved temporally with two sub-networks. The movement of the mesh is reduced to the evolution of several coefficients via complex-valued proper orthogonal decomposition (POD), and the prediction of these coefficients over time is handled by a single multi-layer perceptron (MLP). A finite element-inspired hypergraph neural network is employed to predict the evolution of the fluid state based on the state of the whole system. The structural state is implicitly modeled by the movement of the mesh on the solid–fluid interface; hence, it makes the proposed framework quasi-monolithic. The effectiveness of the proposed framework is assessed on two prototypical fluid–structure systems, namely, the flow around an elastically mounted cylinder and the flow around a hyperelastic plate attached to a fixed cylinder. The proposed framework tracks the interface description and provides stable and accurate system state predictions during roll-out for at least 2000 time steps and even demonstrates some capability in self-correcting erroneous predictions. The proposed framework also enables direct calculation of the lift and drag forces using the predicted fluid and mesh states, in contrast to existing convolution-based architectures. The proposed reduced-order model via the graph neural network has implications for the development of physics-based digital twins concerning moving boundaries and fluid–structure interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姜姗完成签到 ,获得积分10
刚刚
隔壁小王完成签到,获得积分10
1秒前
研友_Lmb15n完成签到,获得积分10
2秒前
3秒前
科研学术完成签到,获得积分10
7秒前
全鑫发布了新的文献求助10
7秒前
义气的青枫完成签到 ,获得积分10
8秒前
fei完成签到 ,获得积分10
8秒前
9秒前
Brenna完成签到 ,获得积分10
11秒前
ccm应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
mashibeo应助科研通管家采纳,获得10
12秒前
12秒前
pluto应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
pluto应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
mashibeo应助科研通管家采纳,获得10
13秒前
今后应助科研通管家采纳,获得40
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
共享精神应助xwz626采纳,获得10
13秒前
reece完成签到 ,获得积分10
14秒前
17秒前
钰L发布了新的文献求助10
17秒前
优美的莹芝完成签到,获得积分10
22秒前
全鑫完成签到,获得积分10
23秒前
123关注了科研通微信公众号
23秒前
Ade完成签到,获得积分10
24秒前
哈哈完成签到 ,获得积分10
26秒前
跳跃的鹏飞完成签到 ,获得积分0
27秒前
博弈春秋发布了新的文献求助10
27秒前
科研通AI6应助Jodie采纳,获得10
28秒前
斯文败类应助是阿瑾呀采纳,获得10
29秒前
lmplzzp发布了新的文献求助30
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458682
求助须知:如何正确求助?哪些是违规求助? 4564690
关于积分的说明 14296618
捐赠科研通 4489782
什么是DOI,文献DOI怎么找? 2459274
邀请新用户注册赠送积分活动 1449020
关于科研通互助平台的介绍 1424502