Construction of copper-manganese based aminoclays with significant laccase-like activity and its prominent degradation performance towards bisphenol A

化学 激进的 催化作用 双酚A 聚合 氧化剂 光化学 降级(电信) 无机化学 有机化学 聚合物 电信 计算机科学 环氧树脂
作者
Yifan Zeng,Shiyong Sun,Rui Lv,Ke Wang,Yevgeny A. Golubev,Sen Lin,Faqin Dong,Е. Л. Котова,О. Б. Котова
出处
期刊:Journal of environmental chemical engineering [Elsevier BV]
卷期号:12 (1): 111771-111771 被引量:5
标识
DOI:10.1016/j.jece.2023.111771
摘要

In recent years, nanozymes have become promising alternatives to natural enzymes owing to their high catalytic efficiency, substrate specificity, and mild reaction conditions. The catalytic performance of nanozymes can be further improved by doping heterogeneous metals to provide high redox potentials. However, nanozymes for the degradation of endocrine-disrupting chemicals (EDCs) have been scarcely studied, and the degradation mechanisms remain unclear. Herein, a series of aminoclays (ACs) containing various metal dopants were prepared and employed for the degradation of phenolic compounds. The as-synthesized ACs with a Cu-Mn molar ratio of 1:7 (CuMnAC-1–7) showed excellent stability and superior activity for oxidizing bisphenol A (BPA) than natural laccases owing to the electron transport between Cu2+/Cu+ and Mn4+/Mn3+ in the nanozyme. The catalytic oxidation process of BPA consists of a non-free radical pathway mediated by Mn3+, as well as a free radical pathway facilitated by superoxide radicals (O2·-) and singlet oxygen (1O2). Specifically, Mn3+ deprived the electrons of the BPA benzene ring to form phenolic hydroxyl radicals, which were then polymerized to BPA dimers. Cu+ in the structure reduced Mn4+ to Mn3+, accelerating the electron deprivation of BPA and promoting the polymerization reaction. Finally, the high-charge-density region on the dimeric benzene ring tended to lose electrons and form free radicals, facilitating the polymerization into trimers and tetramers. The CuMnAC-1–7 could remove 95% of BPA at a concentration of 200 mg/L within 1 h under acidic conditions. This study provides a new strategy to design high-performance laccase nanozymes for EDCs degradation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利的琳应助滴滴采纳,获得20
3秒前
4秒前
4秒前
可英完成签到,获得积分10
4秒前
wanci应助sjx1116采纳,获得10
6秒前
7秒前
7秒前
阿嘉完成签到 ,获得积分10
9秒前
10秒前
11秒前
火星上藏鸟完成签到,获得积分10
11秒前
LYY发布了新的文献求助30
12秒前
12秒前
13秒前
ML完成签到,获得积分20
13秒前
13秒前
赘婿应助黄鹤采纳,获得10
14秒前
热心访琴应助荣冥幽采纳,获得10
14秒前
jiajia发布了新的文献求助10
15秒前
顺鑫完成签到 ,获得积分10
15秒前
瞬间发布了新的文献求助10
16秒前
16秒前
tuanzi发布了新的文献求助10
16秒前
16秒前
sjx1116发布了新的文献求助10
20秒前
汉堡包应助斑马还没睡采纳,获得10
21秒前
21秒前
Aurora发布了新的文献求助10
21秒前
闫123发布了新的文献求助10
23秒前
草木完成签到,获得积分10
23秒前
CipherSage应助jiajia采纳,获得10
24秒前
情怀应助小乔采纳,获得10
25秒前
幽默钢笔发布了新的文献求助10
26秒前
xdd发布了新的文献求助30
27秒前
WMR发布了新的文献求助10
28秒前
在水一方应助草木采纳,获得10
28秒前
量子星尘发布了新的文献求助10
28秒前
xiaoyu11112发布了新的文献求助10
29秒前
不配.应助JijunXu采纳,获得100
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4284433
求助须知:如何正确求助?哪些是违规求助? 3812006
关于积分的说明 11940941
捐赠科研通 3458561
什么是DOI,文献DOI怎么找? 1896742
邀请新用户注册赠送积分活动 945433
科研通“疑难数据库(出版商)”最低求助积分说明 849192