Construction of copper-manganese based aminoclays with significant laccase-like activity and its prominent degradation performance towards bisphenol A

化学 激进的 催化作用 双酚A 聚合 氧化剂 光化学 降级(电信) 无机化学 有机化学 聚合物 电信 计算机科学 环氧树脂
作者
Yifan Zeng,Shiyong Sun,Rui Lv,Ke Wang,Yevgeny A. Golubev,Sen Lin,Faqin Dong,Е. Л. Котова,О. Б. Котова
出处
期刊:Journal of environmental chemical engineering [Elsevier BV]
卷期号:12 (1): 111771-111771 被引量:5
标识
DOI:10.1016/j.jece.2023.111771
摘要

In recent years, nanozymes have become promising alternatives to natural enzymes owing to their high catalytic efficiency, substrate specificity, and mild reaction conditions. The catalytic performance of nanozymes can be further improved by doping heterogeneous metals to provide high redox potentials. However, nanozymes for the degradation of endocrine-disrupting chemicals (EDCs) have been scarcely studied, and the degradation mechanisms remain unclear. Herein, a series of aminoclays (ACs) containing various metal dopants were prepared and employed for the degradation of phenolic compounds. The as-synthesized ACs with a Cu-Mn molar ratio of 1:7 (CuMnAC-1–7) showed excellent stability and superior activity for oxidizing bisphenol A (BPA) than natural laccases owing to the electron transport between Cu2+/Cu+ and Mn4+/Mn3+ in the nanozyme. The catalytic oxidation process of BPA consists of a non-free radical pathway mediated by Mn3+, as well as a free radical pathway facilitated by superoxide radicals (O2·-) and singlet oxygen (1O2). Specifically, Mn3+ deprived the electrons of the BPA benzene ring to form phenolic hydroxyl radicals, which were then polymerized to BPA dimers. Cu+ in the structure reduced Mn4+ to Mn3+, accelerating the electron deprivation of BPA and promoting the polymerization reaction. Finally, the high-charge-density region on the dimeric benzene ring tended to lose electrons and form free radicals, facilitating the polymerization into trimers and tetramers. The CuMnAC-1–7 could remove 95% of BPA at a concentration of 200 mg/L within 1 h under acidic conditions. This study provides a new strategy to design high-performance laccase nanozymes for EDCs degradation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyc发布了新的文献求助10
刚刚
1秒前
隐形曼青应助霍凡白采纳,获得10
2秒前
2秒前
4秒前
洁净冬瓜发布了新的文献求助10
5秒前
舒心以蓝完成签到,获得积分10
5秒前
搓姆酿发布了新的文献求助10
5秒前
善学以致用应助妮儿采纳,获得10
5秒前
李爱国应助虚心的冷雪采纳,获得10
6秒前
xxyy完成签到 ,获得积分10
6秒前
miss_puff给miss_puff的求助进行了留言
8秒前
9秒前
9秒前
可爱的函函应助ybwei2008_163采纳,获得10
10秒前
LAIII完成签到,获得积分10
12秒前
13秒前
SYLH应助俭朴的期待采纳,获得10
14秒前
14秒前
14秒前
hzz关闭了hzz文献求助
15秒前
彩色的芝麻完成签到 ,获得积分10
16秒前
星辰大海应助可靠盼旋采纳,获得10
18秒前
wjr发布了新的文献求助10
18秒前
样样子完成签到,获得积分10
19秒前
霍凡白发布了新的文献求助10
19秒前
19秒前
艾桑发布了新的文献求助10
19秒前
20秒前
嵇南露完成签到,获得积分10
21秒前
在水一方应助mia采纳,获得10
23秒前
23秒前
23秒前
23秒前
Lucas应助wjr采纳,获得10
24秒前
所所应助彩色的捕采纳,获得10
24秒前
墨菲特发布了新的文献求助10
25秒前
wanci应助vivi采纳,获得20
25秒前
ybwei2008_163发布了新的文献求助10
26秒前
26秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801824
求助须知:如何正确求助?哪些是违规求助? 3347627
关于积分的说明 10334518
捐赠科研通 3063778
什么是DOI,文献DOI怎么找? 1682083
邀请新用户注册赠送积分活动 807911
科研通“疑难数据库(出版商)”最低求助积分说明 763969