程序性细胞死亡
细胞生物学
脂质过氧化
细胞凋亡
化学
生物
生物化学
氧化应激
作者
Pravin R. Phadatare,Jayanta Debnath
摘要
Cancer cells rely on lysosome-dependent degradation to recycle nutrients that serve their energetic and biosynthetic needs. Despite great interest in repurposing the antimalarial hydroxychloroquine as a lysosomal inhibitor in clinical oncology trials, the mechanisms by which hydroxychloroquine and other lysosomal inhibitors induce tumor-cell cytotoxicity remain unclear. In this issue of the JCI, Bhardwaj et al. demonstrate that DC661, a dimeric form of chloroquine that inhibits palmitoyl-protein thioesterase 1 (PPT1), promoted lysosomal lipid peroxidation, resulting in lysosomal membrane permeabilization and tumor cell death. Remarkably, this lysosomal cell death pathway elicited cell-intrinsic immunogenicity and promoted T lymphocyte–mediated tumor cell clearance. The findings provide the mechanistic foundation for the potential combined use of immunotherapy and lysosomal inhibition in clinical trials.
科研通智能强力驱动
Strongly Powered by AbleSci AI