High resolution landslide susceptibility mapping using ensemble machine learning and geospatial big data

山崩 地理空间分析 计算机科学 支持向量机 人工智能 随机森林 机器学习 混淆矩阵 集成学习 数据挖掘 集合预报 稳健性(进化) 遥感 地质学 岩土工程 生物化学 化学 基因
作者
Nirdesh Sharma,Manabendra Saharia,G. V. Ramana
出处
期刊:Catena [Elsevier BV]
卷期号:235: 107653-107653 被引量:35
标识
DOI:10.1016/j.catena.2023.107653
摘要

Landslide susceptibility represents the potential of slope failure for given geo-environmental conditions. The existing landslide susceptibility maps suffer from several limitations, such as being based on limited data, heuristic methodologies, low spatial resolution, and small areas of interest. In this study, we overcome all these limitations by developing a probabilistic framework that combines imbalance handling and ensemble machine learning for landslide susceptibility mapping. We employ a combination of One -Sided Selection and Support Vector Machine Synthetic Minority Oversampling Technique (SVMSMOTE) to eliminate class imbalance and develop smaller representative data from big data for model training. A blending ensemble approach using hyperparameter tuned Artificial Neural Networks, Random Forests, and Support Vector Machine, is employed to reduce the uncertainty associated with a single model. The methodology provides the landslide susceptibility probability and a landslide susceptibility class. A thorough evaluation of the framework is performed using receiver operating characteristic curves, confusion matrices, and the derivatives of confusion matrices. This framework is used to develop India's first national-scale machine learning based landslide susceptibility map. The landslide database is carefully curated from global and local inventories, and the landslide conditioning factors are selected from a multitude of geophysical and climatological variables. The Indian Landslide Susceptibility Map (ILSM) is developed at a resolution of 0.001° (∼100 m) and is classified into five classes: very low, low, medium, high, and very high. We report an accuracy of 95.73 %, sensitivity of 97.08 %, and matthews correlation coefficient (MCC) of 0.915 on test data, demonstrating the accuracy, robustness, and generalizability of the framework for landslide identification. The model classified 4.75 % area in India as very highly susceptible to landslides and detected new landslide susceptible zones in the Eastern Ghats, hitherto unreported in the government landslide records. The ILSM is expected to aid policymaking in disaster risk reduction and developing landslide prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邓博完成签到,获得积分10
1秒前
耍酷的小海豚完成签到 ,获得积分10
3秒前
萝卜特二完成签到,获得积分10
3秒前
上善若水完成签到 ,获得积分10
4秒前
hj123完成签到,获得积分10
5秒前
sunyz应助田甜采纳,获得50
5秒前
好的昂完成签到,获得积分10
5秒前
小二郎应助Migrol采纳,获得10
7秒前
flymove完成签到,获得积分10
7秒前
Jimmybythebay完成签到,获得积分10
7秒前
弹指一挥间完成签到 ,获得积分10
9秒前
hulin_zjxu完成签到,获得积分10
10秒前
甜蜜鹭洋完成签到 ,获得积分10
11秒前
研友_nVNBVn完成签到,获得积分10
11秒前
14秒前
CodeCraft应助晓亮采纳,获得10
14秒前
紫陌完成签到,获得积分10
15秒前
世佳何完成签到,获得积分10
16秒前
蓝天碧海小西服完成签到,获得积分0
17秒前
李义天1212发布了新的文献求助30
17秒前
星海种花完成签到 ,获得积分10
17秒前
木樨完成签到,获得积分10
18秒前
朴实寻琴完成签到 ,获得积分10
18秒前
昏睡的妙梦完成签到 ,获得积分10
18秒前
20秒前
20秒前
城南烤地瓜完成签到 ,获得积分10
21秒前
23秒前
wuyuyu5413完成签到,获得积分10
23秒前
24秒前
篮孩子完成签到,获得积分10
24秒前
zzh完成签到 ,获得积分10
24秒前
25秒前
晓亮完成签到,获得积分10
25秒前
zhoushuai1a发布了新的文献求助10
25秒前
马小翠完成签到,获得积分10
25秒前
往返完成签到,获得积分10
25秒前
开心的太清完成签到,获得积分10
26秒前
fjhsg25完成签到,获得积分20
26秒前
曹沛岚完成签到,获得积分10
27秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Friction Capacity of Piles Driven into Clay 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837587
求助须知:如何正确求助?哪些是违规求助? 3379721
关于积分的说明 10510250
捐赠科研通 3099320
什么是DOI,文献DOI怎么找? 1707062
邀请新用户注册赠送积分活动 821413
科研通“疑难数据库(出版商)”最低求助积分说明 772615